全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis and Evaluation of Folate-Conjugated Phenanthraquinones for Tumor-Targeted Oxidative Chemotherapy

DOI: 10.4236/ojmc.2016.61001, PP. 1-17

Keywords: Cancer, Folate Receptor, Reactive Oxygen Species

Full-Text   Cite this paper   Add to My Lib

Abstract:

Almost all cells are easily killed by exposure to potent oxidants. Indeed, major pathogen defense mechanisms in both animal and plant kingdoms involve production of an oxidative burst, where host defense cells show an invading pathogen with reactive oxygen species (ROS). Although cancer cells can be similarly killed by ROS, development of oxidant-producing chemotherapies has been limited by their inherent nonspecificity and potential toxicity to healthy cells. In this paper, we describe the targeting of an ROS-generating molecule selectively to tumor cells using folate as the tumor-targeting ligand. For this purpose, we exploit the ability of 9,10-phenanthraquinone (PHQ) to enhance the continuous generation of H2O2 in the presence of ascorbic acid to establish a con-stitutive source of ROS within the tumor mass. We report here that incubation of folate receptor-expressing KB cells in culture with folate-PHQ plus ascorbate results in the death of the cancer cells with an IC50 of ~10 nM (folate-PHQ). We also demonstrate that a cleavable spacer linking folate to PHQ is significantly inferior to a noncleavable spacer, in contrast to most other folate-targeted therapeutic agents. Unfortunately, no evidence for folate-PHQ mediated tumor regression in murine tumor models is obtained, suggesting that unanticipated impediments to generation of cytotoxic quantities of ROS in vivo are encountered. Possible mechanisms and potential solutions to these unanticipated results are offered.

References

[1]  Watson, M.B., Lind, M.J. and Cawkwell, L. (2007) Establishment of in-Vitro Models of Chemotherapy Resistance. Anti-Cancer Drugs, 18, 749-754.
http://dx.doi.org/10.1097/CAD.0b013e3280a02f43
[2]  Apel, K. and Hirt, H. (2004) Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55, 373-399.
http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701
[3]  Slauch, J.M. (2011) How Does the Oxidative Burst of Macrophages Kill Bacteria? Still an Open Question. Molecular Microbiology, 80, 580-583.
http://dx.doi.org/10.1111/j.1365-2958.2011.07612.x
[4]  Sun, Y., Colburn, N.H. and Oberley, L.W. (1993) Depression of Catalase Gene Expression after Immortalization and Transformation of Mouse Liver Cells. Carcinogenesis, 14, 1505-1510.
http://dx.doi.org/10.1093/carcin/14.8.1505
[5]  Oberley, T.D. and Oberley, L.W. (1997) Antioxidant Enzyme Levels in Cancer. Histology and Histopathology, 12, 525-535.
[6]  Yang, J., Lam, E.W., Hammad, H.M., Oberley, T.D. and Oberley, L.W. (2002) Antioxidant Enzyme Levels in Oral Squamous Cell Carcinoma and Normal Human Oral Epithelium. Journal of Oral Pathology & Medicine, 31, 71-77.
http://dx.doi.org/10.1034/j.1600-0714.2002.310202.x
[7]  Trachootham, D., Alexandre, J. and Huang, P. (2009) Targeting Cancer Cells by ROS-Mediated Mechanisms: A Radical Therapeutic Approach? Nat. Rev. Drug Discov, 8, 579-591.
http://dx.doi.org/10.1038/nrd2803
[8]  Chen, Q., Espey, M.G., Sun, A.Y., Lee, J.H., Krishna, M.C., Shacter, E., Choyke, P.L., Pooput, C., Kirk, K.L., Buettner, G.R. and Levine, M. (2007) Ascorbate in Pharmacologic Concentrations Selectively Generates Ascorbate Radical and Hydrogen Peroxide in Extracellular Fluid in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 8749-8754.
http://dx.doi.org/10.1073/pnas.0702854104
[9]  Roginsky, V.A., Barsukova, T.K. and Stegmann, H.B. (1999) Kinetics of Redox Interaction between Substituted Quinones and Ascorbate under Aerobic Conditions. Chemico-Biological Interactions, 121, 177-197.
http://dx.doi.org/10.1016/S0009-2797(99)00099-X
[10]  Levine, M., Padayatty, S.J. and Espey, M.G. (2011) Vitamin C: A Concentration-Function Approach Yields Pharmacology and Therapeutic Discoveries. Advances in Nutrition, 2, 78-88. http://dx.doi.org/10.3945/an.110.000109
[11]  Levine, M., Espey, M.G. and Chen, Q. (2009) Losing and Finding a Way at C: New Promise for Pharmacologic Ascorbate in Cancer Treatment. Free Radical Biology and Medicine, 47, 27-29.
http://dx.doi.org/10.1016/j.freeradbiomed.2009.04.001
[12]  Fukumura, H., Sato, M., Kezuka, K., Sato, I., Feng, X., Okumura, S., Fujita, T., Yokoyama, U., Eguchi, H., Ishikawa, Y. and Saito, T. (2012) Effect of Ascorbic Acid on Reactive Oxygen Species Production in Chemotherapy and Hyperthermia in Prostate Cancer Cells. The Journal of Physiological Sciences, 62, 251-257.
http://dx.doi.org/10.1007/s12576-012-0204-0
[13]  Chen, P., Yu, J., Chalmers, B., Drisko, J., Yang, J., Li, B. and Chen, Q. (2012) Pharmacological Ascorbate Induces Cytotoxicity in Prostate Cancer Cells through ATP Depletion and Induction of Autophagy. Anticancer Drugs, 23, 437-444.
http://dx.doi.org/10.1097/CAD.0b013e32834fd01f
[14]  Du, J., Martin, S.M., Levine, M., Wagner, B.A., Buettner, G.R., Wang, S.H., Taghiyev, A.F., Du, C., Knudson, C.M. and Cullen, J.J. (2010) Mechanisms of Ascorbate-Induced Cytotoxicity in Pancreatic Cancer. Clinical Cancer Research, 16, 509-520.
http://dx.doi.org/10.1158/1078-0432.CCR-09-1713
[15]  Verrax, J. and Calderon, P.B. (2009) Pharmacologic Concentrations of Ascorbate Are Achieved by Parenteral Administration and Exhibit Antitumoral Effects. Free Radical Biology and Medicine, 47, 32-40.
http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.016
[16]  Deubzer, B., Mayer, F., Kuci, Z., Niewisch, M., Merkel, G., Handgretinger, R. and Bruchelt, G. (2010) H2O2-Mediated Cytotoxicity of Pharmacologic Ascorbate Concentrations to Neuroblastoma Cells: Potential Role of Lactate and Ferritin. Cellular Physiology and Biochemistry, 25, 767-774.
http://dx.doi.org/10.1159/000315098
[17]  Gilloteaux, J., Jamison, J.M., Neal, D.R., Loukas, M., Doberzstyn, T. and Summers, J.L. (2010) Cell Damage and Death by Autoschizis in Human Bladder (RT4) Carcinoma Cells Resulting from Treatment with Ascorbate and Menadione. Ultrastructural Pathology, 34, 140-160.
http://dx.doi.org/10.3109/01913121003662304
[18]  Ranzato, E., Biffo, S. and Burlando, B. (2011) Selective Ascorbate Toxicity in Malignant Mesothelioma: A Redox Trojan Mechanism. American Journal of Respiratory Cell and Molecular Biology, 44, 108-117.
http://dx.doi.org/10.1165/rcmb.2009-0340OC
[19]  Takemura, Y., Satoh, M., Satoh, K., Hamada, H., Sekido, Y. and Kubota, S. (2010) High Dose of Ascorbic Acid Induces Cell Death in Mesothelioma Cells. Biochemical and Biophysical Research Communications, 394, 249-253.
http://dx.doi.org/10.1016/j.bbrc.2010.02.012
[20]  Biswas, S., Zhao, X., Mone, A.P., Mo, X., Vargo, M., Jarjoura, D., Byrd, J.C. and Muthusamy, N. (2010) Arsenic Trioxide and Ascorbic Acid Demonstrate Promising Activity against Primary Human CLL Cells in Vitro. Leukemia Research, 34, 925-931.
http://dx.doi.org/10.1016/j.leukres.2010.01.020
[21]  Chen, Q., Espey, M.G., Sun, A.Y., Pooput, C., Kirk, K.L., Krishna, M.C., Khosh, D.B., Drisko, J. and Levine, M. (2008) Pharmacologic Doses of Ascorbate Act as a Prooxidant and Decrease Growth of Aggressive Tumor Xenografts in Mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 11105-11109.
http://dx.doi.org/10.1073/pnas.0804226105
[22]  Chen, M.F., Yang, C.M., Su, C.M., Liao, J.W. and Hu, M.L. (2011) Inhibitory Effect of Vitamin C in Combination with Vitamin K3 on Tumor Growth and Metastasis of Lewis Lung Carcinoma Xenografted in C57BL/6 Mice. Nutrition and Cancer, 63, 1036-1043.
http://dx.doi.org/10.1080/01635581.2011.597537
[23]  Sawant, R.R., Vaze, O.S., Wang, T., D’Souza, G.G., Rockwell, K., Gada, K., Khaw, B.A. and Torchilin, V.P. (2012) Palmitoyl Ascorbate Liposomes and Free Ascorbic Acid: Comparison of Anticancer Therapeutic Effects upon Parenteral Administration. Pharmaceutical Research, 29, 375-383.
http://dx.doi.org/10.1007/s11095-011-0557-8
[24]  Chen, P., Stone, J., Sullivan, G., Drisko, J.A. and Chen, Q. (2011) Anti-Cancer Effect of Pharmacologic Ascorbate and Its Interaction with Supplementary Parenteral Glutathione in Preclinical Cancer Models. Free Radical Biology and Medicine, 51, 681-687.
http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.031
[25]  Pollard, H.B., Levine, M.A., Eidelman, O. and Pollard, M. (2010) Pharmacological Ascorbic Acid Suppresses Syngeneic Tumor Growth and Metastases in Hormone-Refractory Prostate Cancer. In Vivo, 24, 249-255.
[26]  Yeom, C.H., Lee, G., Park, J.H., Yu, J., Park, S., Yi, S.Y., Lee, H.R., Hong, Y., Yang, J. and Lee, S. (2009) High Dose Concentration Administration of Ascorbic Acid Inhibits Tumor Growth in BALB/C Mice Implanted with Sarcoma 180 Cancer Cells via the Restriction of Angiogenesis. Journal of Translational Medicine, 7, 70.
http://dx.doi.org/10.1186/1479-5876-7-70
[27]  Verrax, J., Stockis, J., Tison, A., Taper, H.S. and Calderon, P.B. (2006) Oxidative Stress by Ascorbate/Menadione Association Kills K562 Human Chronic Myelogenous Leukaemia Cells and Inhibits Its Tumour Growth in Nude Mice. Biochemical Pharmacology, 72, 671-680.
http://dx.doi.org/10.1016/j.bcp.2006.05.025
[28]  Beck, R., Pedrosa, R.C., Dejeans, N., Glorieux, C., Leveque, P., Gallez, B., Taper, H., Eeckhoudt, S., Knoops, L., Calderon, P.B. and Verrax, J. (2011) Ascorbate/Menadione-Induced Oxidative Stress Kills Cancer Cells That Express Normal or Mutated Forms of the Oncogenic Protein Bcr-Abl. An in Vitro and in Vivo Mechanistic Study. Investigational New Drugs, 29, 891-900.
http://dx.doi.org/10.1007/s10637-010-9441-3
[29]  Bielski, B.H.J. (1978) Reevaluation of the Spectral and Kinetic Properties of Hydroperoxo and Superoxide Anion Free Radicals. Photochemistry and Photobiology, 28, 645-649.
http://dx.doi.org/10.1111/j.1751-1097.1978.tb06986.x
[30]  Mladenka, P., Simunek, T., Hubl, M. and Hrdina, R. (2006) The Role of Reactive Oxygen and Nitrogen Species in Cellular Iron Metabolism. Free Radical Research, 40, 263-272.
http://dx.doi.org/10.1080/10715760500511484
[31]  Pardo-Andreu, G.L., Delgado, R., Nunez-Selles, A.J. and Vercesi, A.E. (2006) Dual Mechanism of Mangiferin Protection against Iron-Induced Damage to 2-Deoxyribose and Ascorbate Oxidation. Pharmacological Research, 53, 253-260. http://dx.doi.org/10.1016/j.phrs.2005.06.006
[32]  Biaglow, J.E., Held, K.D., Manevich, Y., Tuttle, S., Kachur, A. and Uckun, F. (1996) Role of Guanosine Triphosphate in Ferric Ion-Linked Fenton Chemistry. Radiation Research, 145, 554-562.
http://dx.doi.org/10.2307/3579273
[33]  M’Bemba-Meka, P., Lemieux, N. and Chakrabarti, S.K. (2005) Nickel Compound-Induced DNA Single-Strand Breaks in Chromosomal and Nuclear Chromatin in Human Blood Lymphocytes in Vitro: Role of Oxidative Stress and Intracellular Calcium. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 586, 124-137.
http://dx.doi.org/10.1016/j.mrgentox.2005.06.001
[34]  Petersen, A.B., Gniadecki, R., Vicanova, J., Thorn, T. and Wulf, H.C. (2000) Hydrogen Peroxide Is Responsible for UVA-Induced DNA Damage Measured by Alkaline Comet Assay in HaCaT Keratinocytes. Journal of Photochemistry and Photobiology B: Biology, 59, 123-131.
http://dx.doi.org/10.1016/S1011-1344(00)00149-4
[35]  Roginsky, V.A., Barsukova, T.K., Bruchelt, G. and Stegmann, H.B. (1998) Kinetics of Redox Interaction between Substituted 1,4-Benzoquinones and Ascorbate under Aerobic Conditions: Critical Phenomena. Free Radical Research, 29, 115-125.
http://dx.doi.org/10.1080/10715769800300131
[36]  Verrax, J., Delvaux, M., Beghein, N., Taper, H., Gallez, B. and Buc, C.P. (2005) Enhancement of Quinone Redox Cycling by Ascorbate Induces a Caspase-3 Independent Cell Death in Human Leukaemia Cells. An in Vitro Comparative Study. Free Radical Research, 39, 649-657.
http://dx.doi.org/10.1080/10715760500097906
[37]  Muller, F., Crofts, A.R. and Kramer, D.M. (2002) Multiple Q-Cycle Bypass Reactions at the Qo Site of the Cytochrome bc1 Complex. Biochemistry, 41, 7866-7874.
http://dx.doi.org/10.1021/bi025581e
[38]  Mason, R.P. (1990) Redox Cycling of Radical Anion Metabolites of Toxic Chemicals and Drugs and the Marcus Theory of Electron Transfer. Environmental Health Perspectives, 87, 237-243.
http://dx.doi.org/10.1289/ehp.9087237
[39]  Goldenthal, E.I. (1971) A Compilation of LD50 Values in Newborn and Adult Animals. Toxicology and Applied Pharmacology, 18, 185-207.
http://dx.doi.org/10.1016/0041-008X(71)90328-0
[40]  Low, P.S. and Antony, A.C. (2004) Folate Receptor-Targeted Drugs for Cancer and Inflammatory Diseases. Advanced Drug Delivery Reviews, 56, 1055-1058.
http://dx.doi.org/10.1016/j.addr.2004.02.003
[41]  Kamen, B.A. and Capdevila, A. (1986) Receptor-Mediated Folate Accumulation Is Regulated by the Cellular Folate Content. Proceedings of the National Academy of Sciences of the United States of America, 83, 5983-5987.
http://dx.doi.org/10.1073/pnas.83.16.5983
[42]  Yang, J., Chen, H., Vlahov, I.R., Cheng, J.X. and Low, P.S. (2006) Evaluation of Disulfide Reduction during Receptor-Mediated Endocytosis by Using FRET Imaging. Proceedings of the National Academy of Sciences of the United States of America, 103, 13872-13877.
http://dx.doi.org/10.1073/pnas.0601455103
[43]  Reddy, J.A., Allagadda, V.M. and Leamon, C.P. (2005) Targeting Therapeutic and Imaging Agents to Folate Receptor Positive Tumors. Current Pharmaceutical Biotechnology, 6, 131-150.
http://dx.doi.org/10.2174/1389201053642376
[44]  Hilgenbrink, A.R. and Low, P.S. (2005) Folate Receptor-Mediated Drug Targeting: From Therapeutics to Diagnostics. Journal of Pharmaceutical Sciences, 94, 2135-2146.
http://dx.doi.org/10.1002/jps.20457
[45]  Patri, A.K., Kukowska-Latallo, J.F. and Baker Jr., J.R. (2005) Targeted Drug Delivery with Dendrimers: Comparison of the Release Kinetics of Covalently Conjugated Drug and Non-Covalent Drug Inclusion Complex. Advanced Drug Delivery Reviews, 57, 2203-2214.
http://dx.doi.org/10.1016/j.addr.2005.09.014
[46]  Stephenson, S.M., Low, P.S. and Lee, R.J. (2004) Folate Receptor-Mediated Targeting of Liposomal Drugs to Cancer Cells. Methods in Enzymology, 387, 33-50.
http://dx.doi.org/10.1016/S0076-6879(04)87003-4
[47]  Jacobsen, M.H. and Koch, T. (2000) Method of Photochemical Immobilization of Ligands Using Quinines. US Patent No. 6033784.
[48]  Buettner, G.R. (1988) In the Absence of Catalytic Metals Ascorbate Does Not Autoxidize at pH 7: Ascorbate as a Test for Catalytic Metals. Journal of Biochemical and Biophysical Methods, 16, 27-40.
http://dx.doi.org/10.1016/0165-022X(88)90100-5
[49]  Bouffier, L., Lister, K.E., Higgins, S.J., Nichols, R.J. and Doneux, TH. (2012) Electrochemical Investigations of Dissolved and Surface Immobilised 2-amino-1,4-naphthoquinones in Aqueous Solutions. Journal of Electroanalytical Chemistry, 664, 80-87.
http://dx.doi.org/10.1016/j.jelechem.2011.10.017
[50]  Sawyer, D.T. and Roberts, J.L. (1974) Experimental Electrochemistry for Chemists. Wiley and Sons, New York.
[51]  Noto, V., Taper, H.S., Yi-Hua, J., Janssens, J., Bonte, J. and De Loecker, W. (1989) Effects of Sodium Ascorbate (Vitamin C) and 2-methyl-1,4-naphthoquinone (Vitamin K3) Treatment on Human Tumor Cell Growth in Vitro. I. Synergism of Combined Vitamin C and K3 Action. Cancer, 63, 901-906.
http://dx.doi.org/10.1002/1097-0142(19890301)63:5<901::AID-CNCR2820630518>3.0.CO;2-G
[52]  Chambers, J.Q. (1974) Electrochemistry of Quinines. In: Patai, S. and Rappoport, Z., Eds., The Chemistry of Quinonoid Compounds, John Wiley & Sons Ltd., New York, 737-791.
[53]  Leamon, C.P., Reddy, J.A., Vlahov, I.R., Vetzel, M., Parker, N., Nicoson, J.S., Xu, L.-C. and Westrick, E. (2005) Synthesis and Biological Evaluation of EC72: A New Folate-Targeted Chemotherapeutic. Bioconjugate Chemistry, 16, 803-811.
http://dx.doi.org/10.1021/bc049709b
[54]  Winkler, B.S., Orselli, S.M. and Rex, T.S. (1994) The Redox Couple between Glutathione and Ascorbic Acid: A Chemical and Physiological Perspective. Free Radical Biology and Medicine, 17, 333-349.
http://dx.doi.org/10.1016/0891-5849(94)90019-1
[55]  Foyer, C.H. and Noctor, G. (2005) Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. Plant Cell, 17, 1866-1875.
http://dx.doi.org/10.1105/tpc.105.033589
[56]  Low, P.S., Henne, W.A. and Doorneweerd, D.D. (2008) Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases. Accounts of Chemical Research, 41, 120-129.
http://dx.doi.org/10.1021/ar7000815
[57]  Taguchi, K., Shimada, M., Fujii, S., Sumi, D., Pan, X., Yamano, S., Nishiyama, T., Hiratsuka, A., Yamamoto, M., Cho, A.K., Froines, J.R. and Kumagai, Y. (2008) Redox Cycling of 9,10-phenanthraquinone to Cause Oxidative Stress Is Terminated through Its Monoglucuronide Conjugation in Human Pulmonary Epithelial A549 Cells. Free Radical Biology and Medicine, 44, 1645-1655.
http://dx.doi.org/10.1016/j.freeradbiomed.2008.01.024
[58]  Paulos, C.M., Reddy, J.A., Leamon, C.P., Turk, M.J. and Low, P.S. (2004) Ligand Binding and Kinetics of Folate Receptor Recycling in Vivo: Impact on Receptor-Mediated Drug Delivery. Molecular Pharmacology, 66, 1406-1414.
http://dx.doi.org/10.1124/mol.104.003723
[59]  Chen, Q., Espey, M.G., Krishna, M.C., Mitchell, J.B., Corpe, C.P., Buettner, G.R., Shacter, E. and Levine, M. (2005) Pharmacologic Ascorbic Acid Concentrations Selectively Kill Cancer Cells: Action as a Pro-Drug to Deliver Hydrogen Peroxide to Tissues. Proceedings of the National Academy of Sciences of the United States of America, 102, 13604-13609.
http://dx.doi.org/10.1073/pnas.0506390102

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133