A set of dolphin echolocation signals previously collected from an Atlantic bottlenose dolphin in Kaneohe Bay, Hawai’i are decomposed using a matching pursuit algorithm to further investigate the role of four types of echolocation signals outlined elsewhere [1]. The method decomposes the echolocation signals into optimal linear expansions of waveforms, which are Gabor functions defined in a dictionary. The method allows for study of the changes in frequency content within a dolphin’s functional bandwidth during discrimination tasks. We investigate the role of the functional bandwidth in terms of the signal energy levels and echolocations task performance. Furthermore, ROC analysis is applied to the relative energies of the matched waveforms to determine probability of discrimination. The results suggest that dolphins may discriminate by inspection of the relevant frequency differences between targets. In addition, the results from the ROC analysis provides insight into the role of the different classes of dolphin signals and of the importance of modification of the outgoing echolocation clicks, which may be fundamental to a dolphin’s ability to identify and discriminate targets.
References
[1]
Muller, M.W., Allen, J.S., Au, W.W.L. and Nachtigall, P.E. (2008) Time-Frequency Analysis and Modeling of the Backscatter of Categorized Dolphin Echolocation Clicks for Target Discrimination. Journal of the Acoustical Society of America, 124, 657-666. http://dx.doi.org/10.1121/1.2932060
[2]
Nachtigall, P.E. (1980) Odontocete Echolocation Performance on Object Size, Shape, and Material. In: Busnel, R.G. and Fish, J.F., Eds., Animal Sonar Systems, Plenum Press, New York. http://dx.doi.org/10.1007/978-1-4684-7254-7_4
[3]
Au, W.W.L. (1993) The Sonar of Dolphins. Springer-Verlag, New York.
[4]
Au, W.W.L., Moore, P.W.B. and Pawloski, D.A. (1988) Detection of Complex Echoes in Noise by an Echolocating Dolphin. Journal of the Acoustical Society of America, 83, 662-668. http://dx.doi.org/10.1121/1.396161
[5]
Dubrovskiy N.A. and Krasnov, O.S. (1971) Discrimination of Elastic Spheres According to Material and Size by the Bottlenose Dolphin. Acoustics Institute, Moscow, 17, 9-18.
[6]
Au, W.W.L. and Hammer, C.E. (1980) Target Recognition via Echolocation by Tursiops truncatus. In: Busnel, R.G. and Fish, J.F., Eds., Animal Sonar Systems, Plenum Press, New York, 855-858. http://dx.doi.org/10.1007/978-1-4684-7254-7_40
[7]
Hammer, C.E. and Au, W.W.L. (1980) Porpoise Echo-Recognition: An Analysis of Controlling Target Characteristics. Journal of the Acoustical Society of America, 68, 1285-1293. http://dx.doi.org/10.1121/1.385015
[8]
Gaunaurd, G.C., Brill, D., Huang, H., Moore, P.W.B. and Strifors, H.C. (1998) Signal Processing of the Echo Signatures Returned by Submerged Shells Insonified by Dolphin “Clicks:” Active classification. Journal of the Acoustical Society of America, 103, 1547-1557. http://dx.doi.org/10.1121/1.421302
[9]
Mallatand, S.G. Zhang, Z. (1993) Matching Pursuits with Time-Frequency Dictionaries. IEEE Transactions on Signal Processing, 41, 3397-3415. http://dx.doi.org/10.1109/78.258082
[10]
Akay, M. and Daubenspeck, J.A. (1999) Investigating the Contamination of Electroencephalograms by Facial Muscle Electromyographic Activity Using Matching Pursuit. Brain Lang, 66, 184-200. http://dx.doi.org/10.1006/brln.1998.2030
[11]
Gribonval, R. and Bacry, E. (2003) Harmonic Decomposition of Audio Signals with Matching Pursuit. IEEE Transactions on Signal Processing, 51, 101-111. http://dx.doi.org/10.1109/TSP.2002.806592
[12]
Bardonova, J. Provaznik, I. and Novakova, M. (2006) Matching Pursuit Decomposition for Detection of Frequency Changes in Experimental Data—Application to Heart Signal Recording Analysis. Scripta Medica, 79, 279-288.
[13]
Malinowska, U. Durka, P.J., Zygierwicz, J., Szelenberger, W. and Wakarow, A. (2007) Explicit Parameterization of Sleep EEG Transients. Computers in Biology and Medicine, 37, 534-541. http://dx.doi.org/10.1016/j.compbiomed.2006.08.005
[14]
Sava, H., Pibarot, P. and Durand, L.G. (1998) Application of the Matching Pursuit Method for Structural Decomposition and Averaging of Phonocardiographic Signals. Medical & Biological Engineering & Computing, 36, 302-308. http://dx.doi.org/10.1007/BF02522475
[15]
Zhang, X. and Durand, L.G. (1998) Analysis-Synthesis of the Phonocardiogram Based on the Matching Pursuit Method. IEEE Transactions on Biomedical Engineering, 45, 962-971. http://dx.doi.org/10.1109/10.704865
[16]
Zhang, X., Durand, L.G., Senhadji, L., Lee, H.C. and Coatrieux, J.L. (1998) Time-Frequency Scaling Transformation of the Phonocardiogram Based on the Matching Pursuit Method. IEEE Transactions on Biomedical Engineering, 45, 972-979. http://dx.doi.org/10.1109/10.704866
[17]
Green, D.M. and Swets, J.A. (1966) Signal Detection Theory and Psychophysics. Wiley, New York.
[18]
Schusterman, R.J., Barrett, R. and Moore, R.W.B. (1975) Detection of Underwater Signals by a California Sea Lion and a Bottlenose Porpoise: Variation in the Payoff Matrix. Journal of the Acoustical Society of America, 57, 1526-1532. http://dx.doi.org/10.1121/1.380595
[19]
Au, W.W.L. and Turl, C.W. (1984) Dolphin Biosonar Detection in Clutter: Variation in the Payoff Matrix. Journal of the Acoustical Society of America, 76, 955-957. http://dx.doi.org/10.1121/1.391279
[20]
Au, W.W.L. and Pawloski, D.A. (1989) A Comparison of Signal Detection between an Echolocating Dolphin and an Optimal Receiver. Journal of Computational Physiology A, 164, 451-458. http://dx.doi.org/10.1007/BF00610439
[21]
Muller, M.W., Au, W.W.L., Nachtigall, P.E., Allen, J.S. and Breese, M. (2007) Phantom Echo Highlight Amplitude and Temporal Difference Resolutions of an Echolocating Dolphin, Tursiops truncatus. Journal of the Acoustical Society of America, 122, 2255-2262. http://dx.doi.org/10.1121/1.2769973
[22]
Harley, H., Roitblat, H.L. and Nachtigall, P.E. (1997) Object Representation in the Bottlenosed Dolphin (Tursiops truncatus): Integration of Visual and Echoic Information. Journal of Experimental Psychology: Animal Behavior Processes, 22, 164-174. http://dx.doi.org/10.1037/0097-7403.22.2.164
[23]
Aubauer, R., Au, W.W.L., Nachtigall, P.E., Pawloski, D.A. and DeLong, C.M. (2000) Classification of Electronically Generated Phantom Targets by an Atlantic Bottlenose Dolphin Tursiops truncatus. Journal of the Acoustical Society of America, 107, 2750-2754. http://dx.doi.org/10.1121/1.428661
[24]
Ibsen, S.D., Au, W.W.L., Nachtigall, P.E., DeLong, C.M. and Breese, M. (2007) Changes in Signal Parameters over Time for an Echolocating Atlantic Bottlenose Dolphin Performing the Same Target Discrimination Task. Journal of the Acoustical Society of America, 122, 2446-2450. http://dx.doi.org/10.1121/1.2772213
[25]
Schwarz, G. (1978) Estimating the Dimension of a Model. The Annals of Statistics, 6, 461-464. http://dx.doi.org/10.1214/aos/1176344136
[26]
Au, W.W.L., Pawloski, J.L., Nachtigall, P.E., Blonz, M. and Gisner, R.C. (1995) Echolocation Signals and Transmission Beam Pattern of a False Killer Whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 98, 51-59. http://dx.doi.org/10.1121/1.413643
[27]
Brill, D., Gaunaurd, G., Strifors, H. and Wertman, W. (1991) Backscattering of Sound Pulses by Elastic Bodies Underwater. Applied Acoustics, 33, 87-107. http://dx.doi.org/10.1016/0003-682X(91)90067-O
[28]
Durka, P.J., Ircha, D. and Blinowska, K.J. (2001) Stochastic Time-Frequency Dictionaries for Matching Pursuit. IEEE Transactions on Signal Processing, 49, 507-510. http://dx.doi.org/10.1109/78.905866
[29]
Donoho, D., Maleki, A. and Shahram, M. (2007) WaveLab 850. Department of Statistics, Stanford University, Stanford. http://www-stat.stanford.edu/~wavelab/
[30]
Ibsen, S.D. (2006) Use of Phantom Echo Techniques to Determine Echolocation Parameters and Strategies of Dolphins. PhD Thesis, University of Hawai’i, Honolulu.
[31]
Aubauer, R. and Au, W.W.L. (1998) Phantom Echo Generation: A New Technique for Investigating Dolphin Echolocation. Journal of the Acoustical Society of America, 105, 1165-1170. http://dx.doi.org/10.1121/1.424324
[32]
Fawcett, T. (2004) ROC Graphs: Notes and Practical Considerations for Researchers. Technical Report, HP Laboratories, Palo Alto.
[33]
Muller, M.W. (2008) Acoustic Modeling, Phantom Echolocation Experiments, and Time-Frequency Analysis of Dolphin Sonar for Improved Technological Sonar Systems. PhD Dissertation, University of Hawaii, Honolulu.
[34]
Herman, L.M. and Arbeit, W.R. (1972) Frequency Difference Limens in the Bottlenose Dolphin: 1-7 kc/s. Journal of Auditory Research, 12, 109-120.
[35]
Thompson, R.K.R. and Herman, L.M. (1975) Underwater Frequency Discrimination in the Bottlenosed Dolphin (1-140 kHz) and the Human (1-8 kHz). Journal of the Acoustical Society of America, 57, 943-948. http://dx.doi.org/10.1121/1.380513