In this study, the electrochemical corrosion behavior of copper was investigated in seawater collected from four different marine zones of Agadir coastal. These zones are different by the degree of pollution in order to study the effect of this pollution on the copper corrosion, especially the microbial pollution by sulfate reducing-bacteria (SRB). So, to prove this relationship, the microbiological analyses researching the SRB are realized. In parallel, the electrochemical impedance measurement and atomic absorption analysis are established to compare the microbiological evolution cycles with the electrochemical behavior of copper during the immersion period. In the results, we found a good correlation between the growth cycle of marine sulfate-reducing bacteria and the copper corrosion rate by the sulfur and extracellular polymeric substances (EPS) produced as bacteria metabolites. Additionally, this corrosion rate depends on the immersed time: it is maximal after the first or second month depending on the marine zone.
References
[1]
Huttunen-Saarivirta, E., Honkanen, M., Lepistö, T., Kuokkala, V.-T., Koivisto, L. and Berg, C.-G. (2012) Microbiologically Influenced Corrosion (MIC) in Stainless Steel Heat Exchanger. Applied Surface Science, 258, 6512-6526.
[2]
Vernon, W.H.J. and Whitby, L. (1930) The Open-Air Corrosion of Copper, Part II: The Mineralogical Relationships of Corrosion Products. The Japan Institute of Metals, 44, 389-396.
[3]
Leidheiser Jr., H. (1971) The Corrosion of Copper, Tin and Their Alloys. John Wiley, New York, 230.
[4]
Mattsson, E. and Holm, R. (1982) Atmospheric Corrosion of Copper and Its Alloys. In: Ailor, W.H., Ed., Electrochemical Society Monograph on Atmospheric Corrosion, John Wiley, New York, 365.
[5]
Nassau, K., Miller, A.E. and Graedel, T.E. (1987) The Reaction of Simulated Rain with Copper, Copper Patina, and Some Copper Compounds. Corrosion Science, 27, 703-719. http://dx.doi.org/10.1016/0010-938X(87)90052-7
[6]
Fitzgerald, K.P., Nairn, J. and Atrens, A. (1998) The Chemistry of Copper Patination. Corrosion Science, 40, 2029-2050. http://dx.doi.org/10.1016/S0010-938X(98)00093-6
[7]
Melchers, R.E. (2007) The Effects of Water Pollution on the Immersion Corrosion of Mild and Low Alloy Steels. Corrosion Science, 49, 3149-3167. http://dx.doi.org/10.1016/j.corsci.2007.03.021
[8]
AlAbbas, F.M., Williamson, C., Bhola, S.M., Spear, J.R., Olson, D.L., Mishra, B. and Kakpovbia, A.E. (2013) Influence of Sulfate Reducing Bacterial Biofilm on Corrosion Behavior of Low-Alloy, High-Strength Steel (API-5L X80). International Biodeterioration & Biodegradation, 78, 34-42. http://dx.doi.org/10.1016/j.ibiod.2012.10.014
[9]
Stewart, D.J. (1984) The Sulphate-Reducing Bacteria. 2nd Edition, Cambridge University Press, Cambridge, 8209.
[10]
Booth, G.H. and Tiller, A.K. (1960) Polarization Studies of Mild Steel in Cultures of Sulphate-Reducing Bacteria. Transaction of the Faraday Society, 56, 1689-1696. http://dx.doi.org/10.1039/tf9605601689
[11]
Cord-Ruwisch, R. and Widdel, F. (1986) Corroding Iron as a Hydrogen Source for Sulphate Reduction in Growing Cultures of Sulphate Reducing Bacteria. Applied, Microbiology and Biotechnology, 25, 169-174.
http://dx.doi.org/10.1007/BF00938942
[12]
Hardy, J.A. (1983) Utilisation of Cathodic Hydrogen by Sulphate-Reducing Bacteria. British Corrosion Journal, 18, 190-193. http://dx.doi.org/10.1179/000705983798273642
[13]
Pankhania, I.P., Moosavi, A.N. and Hamilton, W.A. (1986) Utilisation of Cathodic Hydrogen by Desulfovibrio Vulgaris (Hildenborough). Journal of General Microbiology, 132, 3357-3365.
[14]
Wanklyn, J.N. and Spruit, C.J.P. (1952) Influence of Sulphate Reducing Bacteria on the Corrosion Potential of Iron. Nature, 169, 928-929. http://dx.doi.org/10.1038/169928b0
[15]
Cao, J.Y., Zhang, G.J., Mao, Z.-S., Li, Y.Y., Fang, Z.H. and Yang, C. (2012) Influence of Electron Donors on the Growth and Activity of Sulfate-Reducing Bacteria. International Journal of Mineral Processing, 106-109, 58-64.
http://dx.doi.org/10.1016/j.minpro.2012.02.005
[16]
Rodriguez, J.J.S., Hernandez, F.J.S. and Gonzalez, J.E. (2006) Comparative Study of the Behaviour of AISI 304 SS in a Natural Seawater Hopper, in Sterile Media and with SRB Using Electrochemical Techniques and SEM. Corrosion Science, 48, 1265-1278. http://dx.doi.org/10.1016/j.corsci.2005.04.007
[17]
Nunez, L., Reguera, E., Corvo, F., Gonzalez, E. and Vazquez, C. (2005) Corrosion of Copper in Seawater and Its Aerosols in a Tropical Island. Corrosion Science, 47, 461-484. http://dx.doi.org/10.1016/j.corsci.2004.05.015
[18]
Sheng, X., Ting, Y.-P. and Pehkonen, S.O. (2007) The Influence of Sulphate-Reducing Bacteria Biofilm on the Corrosion of Stainless Steel AISI 316. Corrosion Science, 49, 2159-2176. http://dx.doi.org/10.1016/j.corsci.2006.10.040
[19]
Castaneda, H. and Benetton, X.D. (2008) SRB-Biofilm Influence in Active Corrosion Sites Formed at the Steel-Electrolyte Interface When Exposed to Artificial Seawater Conditions. Corrosion Science, 50, 1169-1183.
http://dx.doi.org/10.1016/j.corsci.2007.11.032
[20]
Duan, J., Wu, S., Zhang, X., Huang, G., Du, M. and Hou, B. (2008) Corrosion of Carbon Steel Influenced by Anaerobic Biofilm in Natural Seawater. Electrochimica Acta, 54, 22-28. http://dx.doi.org/10.1016/j.electacta.2008.04.085
[21]
Tsuru, T., Haruyama, S. and Gijutsu, B. (1978) Corrosion Inhibition of Iron by Amphoteric Surfactants in 2M HCl. Journal of the Japan Society of Corrosion Engineering, 27, 573-581.
[22]
Davoodi, A., Pakshir, M., Babaiee, M. and Ebrahimi, G.R. (2011) A Comparative H2S Corrosion Study of 304L and 316L Stainless Steels in Acidic Media. Corrosion Science, 53, 399-408. http://dx.doi.org/10.1016/j.corsci.2010.09.050
[23]
Marchal, R. (1999) Rôle des bactéries sulfurogènes dans la corrosion du fer. Oil and Gas Science and Technology, 54, 649-659. http://dx.doi.org/10.2516/ogst:1999054
[24]
Ornek, D., Wood, T.K., Hsu, C.H. and Mansfeld, F. (2002) Corrosion Control Using Regenerative Biofilms (CCURB) on Brass in Different Media. Corrosion Science, 44, 2291-2302. http://dx.doi.org/10.1016/S0010-938X(02)00038-0
[25]
Ôrnek, D., Jayaraman, A., Syrett, B.C., Hsu, C.-H., Mansfeld, F.B. and Wood, T.K. (2002) Pitting Corrosion Inhibition of Aluminum 2024 by Bacillus Biofilms Secreting Polyaspartate or γ-Polyglutamate. Applied Microbiology and Biotechnology, 58, 651-657. http://dx.doi.org/10.1007/s00253-002-0942-7
[26]
Miranda-Tello, E., Fardeau, M.L., Fernandez, L., Ramirez, F., Cayol, J.L., Thomas, P., Garcia, J.L. and Ollivier, B. (2003) Desulfovibrio capillatus sp. nov., a Novel Sulfate-Reducing Bacterium Isolated from an Oil Field Separator Located in the Gulf of Mexico. Anaerobe, 9, 97-103. http://dx.doi.org/10.1016/S1075-9964(03)00064-7
[27]
Jones, D.A. and Amy, P.S. (2002) A Thermodynamic Interpretation of Microbiologically Influenced Corrosion. Corrosion, 58, 638-645. http://dx.doi.org/10.5006/1.3287692
[28]
Meyer, C. and Meyer, B. (1977) Sulfur, Energy and Environment. Elsevier Science Ltd., Amsterdam.
[29]
Beech, I.B. and Gaylarde, C.C. (1999) Recent Advances in the Study of Biocorrosion—An Overview. Revista de Microbiologia, 30, 177-190. http://dx.doi.org/10.1590/S0001-37141999000300001
Yan, X., Long, A., Liang, H. and Sun, R. (2015) Ecological Features of Sulphate-Reducing Bacteria in a CO2 Flooding Gathering Environment. Journal of Natural Gas Science and Engineering, 22, 335-339.
http://dx.doi.org/10.1016/j.jngse.2014.09.019
[32]
Du, J.B., Yin, Y.S., Teng, S.L., Chang, X.T. and Cheng, S. (2007) Advances on Corrosion Caused by Marine Microorganisms. Shandong Metallurgy, 29, 1-3.
[33]
Zhang, C., Wen, F. and Cao, Y. (2011) Progress in Research of Corrosion and Protection by Sulfate-Reducing Bacteria. Procedia Environmental Sciences, 10, 1177-1182. http://dx.doi.org/10.1016/j.proenv.2011.09.188