全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study Nanostructure of a Biomaterial with Medicine Therapeutic Activity

DOI: 10.4236/mr.2016.42004, PP. 32-38

Keywords: Biomaterials, Nanomolecular, Anti-Inflamatory, Vehicles

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Mexico, the medicinal plants have been for used since ancient times and still continue to use by rural populations to treat conditions such as infectious diseases (skin, gastrointestinal or respiratory), metabolics, inflammatory problems, among others. This work includes a proposal that initiates the study and development of new biomaterials or vehicles with therapeutic application. The nanomolecular interaction of the organic extract of a plant (EOV) Distictis buccinatoria (dc) with different materials inert supports of inorganic type (bentonite, gel) determining their and combined anti-inflammatory activity is studied individually [1] [2]. The importance of the characterization of biomaterials by scanning electron microscopy (SEM) is ability to analyze the structure on the surface of materials (organic, inorganic and biological) in the micro and nanometrics levels in order to correlate it with the sample surface properties such as roughness, interfacial phenomena, etc. With this technique we can also perform the chemical analysis at different levels (micro and nano) for information on the nature and composition of the materials [3] [4]. The biomaterial shows that higher anti-inflammatory activity is to be generated through the combination of EOV-gel, the nanostructure interaction SEM shows integrated particles agglome-rated form and porous due to the presence of EOV and some flat areas indicated the gel preponderance situation generated by the low interaction between materials of organic type and polar type (gel).

References

[1]  Monroy, C. and Castillo, P. (2000) Enciclopedia Plantas medicinales utilizadas en el estado de Morelos. Universidad Autónoma del Estado de Morelos, México, 400 p.
[2]  Rojas, M.G. (2001) Antimicrobial Evaluation of Certain Plants Used in Mexican Traditional Medicine for the Treatment of Respiratory Diseases. Journal of Ethnopharmacology, 74, 97-101.
http://dx.doi.org/10.1016/S0378-8741(00)00349-4
[3]  Navarro, A., de la Heras, B. and Villar, A. (2001) Anti-Inflamatory and Inmunomodulating Properties of a Sterol Fraction from Sidensfoetens CLEM. Biological and Pharmaceutical Bulletin, 24, 470-473. http://dx.doi.org/10.1248/bpb.24.470
[4]  Goldstein, N. (1992) Scanning Electron Microscopy and X-Ray Analysis. Plenum Press, New York. http://dx.doi.org/10.1007/978-1-4613-0491-3
[5]  Warner, T.D. (2004) Cyclooxygenases: New Forms, New Inhibitors, and Lessons from the Clinic. The FASEB Journal, 18, 790-804. http://dx.doi.org/10.1096/fj.03-0645rev
[6]  Argueta, A. (1994) Atlas de las Plantas de la Medicina Tradicional Mexicana. Tomo 1-3, Instituto Nacional Indigenista, México D.F., 1786 p.
[7]  Abraham, G.A. (1998) La ciencia y la ingeniería de los biomateriales, un desafío interdisciplinario. Ciencia Hoy, 9, 50- 59.
[8]  Cuadrado, T.T. (1996) Ciencia y Mercado de Biomateriales, situación actual y perspectivas. Materiales Ciencia y Mercado, 2, 47-52.
[9]  González, M.F. (1998) Polímeros bioadsorbibles en dispositivos biomédicos. Argent de Bioing, 4, 3-10.
[10]  Ratner, B.D. (1996) Biomaterials Science and Introduction to Materials in Medicine. Academic Press, Cambridge.
[11]  Gustavo, A. (2001) Hacia nuevos biomateriales: Aportes desde el campo de la Química Macromolecular. Anales de la Real Sociedad Espanola de Química, No. 2, 22-33.
[12]  Gentry, A.H. (1982) Flora de Veracruz. Instituto Nacional de Investigaciones sobre recursos bióticos Xalapa, Veracruz, México. Fascículo 24, 1-4.
[13]  Remi, S. (1977) Diccionario de la Lengua Nahualt o Mexicana. Siglo XXI, México, D.F., p. 715, 774.
[14]  Thompson, W.A.R. (1981) Guía práctica ilustrada de las plantas medicinales. Ed. Blume, Barcelona, 219.
[15]  Gentry, A.H. (1992) A Sinopsis of Bignoniaceae, Ethnobotany and Economic Botany. Annals of the Missouri Botanical Garden, 79, 53-64. http://dx.doi.org/10.2307/2399809
[16]  Rojas, M.G. (2007) Antibacterial, Antifungal, and Cytotoxic Activities of Distictis buccinatoria. Pharmaceutical Biology, 45, 289-294. http://dx.doi.org/10.1080/13880200701214847
[17]  De Young, L.M. (1989) Edema and Cell Infliltration in the Phorbol Ester-Treated Mouse Ear Are Temporally Separate and Can Be Differentially Modulated by Pharmacologic Agents. Agents and Actions, 26, 335-341. http://dx.doi.org/10.1007/BF01967298
[18]  Liu, J. (1995) Pharmacology of Oleanolic Acid and Ursolic Acid. Journal of Ethnopharmacology, 49, 57-68. http://dx.doi.org/10.1016/0378-8741(95)90032-2
[19]  Liu, J. (2005) Oleanolic Acid and Ursolic Acid. Research Perspectives. Journal of Ethnopharmacology, 100, 92-94. http://dx.doi.org/10.1016/j.jep.2005.05.024
[20]  Yasunaka, K. (2005) Antibacterial Activity of Crude Extracts from Mexican Medicinal Plants and Purified Coumarins and Xantrhones. Journal of Ethnopharmacology, 97, 293-299.
http://dx.doi.org/10.1016/j.jep.2004.11.014
[21]  Steinberg, M. (2001) From Inactive Ingredients to Pharmaceutical Excipients. Pharmaceutical Technology, 25, 62-64.
[22]  Blecher, L. (1993) Pharmaceutical Excipients, Producers and Users Strengthen Their Voice. Pharmaceutical Technology, 17, 38-39.
[23]  Chávez, C.M. (2008) Desarrollo de biomateriales con aplicación terapéutica medicinal. PhD Thesis, Centro de Investigación en Ingeniería y Ciencias Aplicadas, México, D.F.
[24]  Guardián, T.R. (2010) Modificación superficial de aceros de aplicación industrial. PhD Thesis, Centro de Investigación en Ingeniería y Ciencias Aplicadas, México, D.F.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413