全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

P1 Ref Endonuclease: A Molecular Mechanism for Phage-Enhanced Antibiotic Lethality

DOI: 10.1371/journal.pgen.1005797

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ref is an HNH superfamily endonuclease that only cleaves DNA to which RecA protein is bound. The enigmatic physiological function of this unusual enzyme is defined here. Lysogenization by bacteriophage P1 renders E. coli more sensitive to the DNA-damaging antibiotic ciprofloxacin, an example of a phenomenon termed phage-antibiotic synergy (PAS). The complementary effect of phage P1 is uniquely traced to the P1-encoded gene ref. Ref is a P1 function that amplifies the lytic cycle under conditions when the bacterial SOS response is induced due to DNA damage. The effect of Ref is multifaceted. DNA binding by Ref interferes with normal DNA metabolism, and the nuclease activity of Ref enhances genome degradation. Ref also inhibits cell division independently of the SOS response. Ref gene expression is toxic to E. coli in the absence of other P1 functions, both alone and in combination with antibiotics. The RecA proteins of human pathogens Neisseria gonorrhoeae and Staphylococcus aureus serve as cofactors for Ref-mediated DNA cleavage. Ref is especially toxic during the bacterial SOS response and the limited growth of stationary phase cultures, targeting aspects of bacterial physiology that are closely associated with the development of bacterial pathogen persistence.

References

[1]  Hede K. An infectious arms race. Nature. 2014;509(7498):S2–S3. doi: 10.1038/509S2a. pmid:24784426
[2]  Koch G, Yepes A, Forstner KU, Wermser C, Stengel ST, Modamio J, et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell. 2014;158(5):1060–71. doi: 10.1016/j.cell.2014.06.046. pmid:25171407
[3]  Stanton TB. A call for antibiotic alternatives research. Trends Microbiol. 2013;21(3):111–3. doi: 10.1016/j.tim.2012.11.002. pmid:23473628
[4]  Allen HK, Levine UY, Looft T, Bandrick M, Casey TA. Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol. 2013;21(3):114–9. doi: 10.1016/j.tim.2012.11.001. pmid:23473629
[5]  Garcia-Quintanilla M, Pulido MR, Lopez-Rojas R, Pachon J, McConnell MJ. Emerging therapies for multidrug resistant Acinetobacter baumannii. Trends Microbiol. 2013;21(3):157–63. doi: 10.1016/j.tim.2012.12.002. pmid:23317680
[6]  Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage. 2011;1(2):66–85. pmid:22334863 doi: 10.4161/bact.1.2.15845
[7]  Nobrega FL, Costa AR, Kluskens LD, Azeredo J. Revisiting phage therapy: new applications for old resources. Trends Microbiol. 2015;23(4):185–91. doi: 10.1016/j.tim.2015.01.006. pmid:25708933
[8]  Goodridge LD, Bisha B. Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage. 2011;1(3):130–7. pmid:22164346 doi: 10.4161/bact.1.3.17629
[9]  Balogh B, Jones JB, Iriarte FB, Momol MT. Phage therapy for plant disease control. Curr Pharm Biotech. 2010;11(1):48–57. doi: 10.2174/138920110790725302
[10]  Comeau AM, Tetart F, Trojet SN, Prere MF, Krisch HM. Phage-Antibiotic Synergy (PAS): beta-Lactam and Quinolone Antibiotics Stimulate Virulent Phage Growth. PLoS One. 2007;2(8). doi: 10.1371/journal.pone.0000799
[11]  Comeau AM, Tetart F, Trojet SN, Prere MF, Krisch HM. The discovery of a natural phenomenon, "Phage-Antibiotic Synergy": implications for phage therapy. M S-Med Sci. 2008;24(5):449–51. doi: 10.1371/journal.pone.0000799
[12]  Kamal F, Dennis JJ. Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): Antibiotics stimulate lytic phage activity. Appl Environ Microbiol. 2015;81(3):1132–8. doi: 10.1128/AEM.02850-14. pmid:25452284
[13]  Kirby AE. Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One. 2012;7(11). doi: 10.1371/journal.pone.0051017
[14]  Knezevic P, Curcin S, Aleksic V, Petrusic M, Vlaski L. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Res Microbiol. 2013;164(1):55–60. doi: 10.1016/j.resmic.2012.08.008. pmid:23000091
[15]  Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol. 2012;65(2):395–8. doi: 10.1111/j.1574-695X.2012.00977.x. pmid:22524448
[16]  Lu SD, Lu D, Gottesman M. Stimulation of IS1 excision by bacteriophage P1 ref function. J Bacteriol. 1989;171(6):3427–32. pmid:2542224
[17]  Windle BE, Hays JB. A phage P1 function that stimulates homologous recombination of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1986;83(11):3885–9. pmid:3012538 doi: 10.1073/pnas.83.11.3885
[18]  Windle BE, Laufer CS, Hays JB. Sequence and deletion analysis of the recombination enhancement gene (ref) of bacteriophage P1: evidence for promoter-operator and attenuator-antiterminator control. J Bacteriol. 1988;170(10):4881–9. pmid:3170487
[19]  Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951;62:293–300. pmid:14888646
[20]  Lobocka MB, Rose DJ, Plunkett G 3rd, Rusin M, Samojedny A, Lehnherr H, et al. Genome of bacteriophage P1. J Bacteriol. 2004;186(21):7032–68. pmid:15489417 doi: 10.1128/jb.186.21.7032-7068.2004
[21]  Heinrich J, Riedel HD, Ruckert B, Lurz R, Schuster H. The lytic replicon of bacteriophage-P1 is controlled by an antisense RNA. Nuc Acids Res. 1995;23(9):1468–74. doi: 10.1093/nar/23.9.1468
[22]  Chikova AK, Schaaper RM. The bacteriophage P1 hot gene, encoding a homolog of the E. coli DNA polymerase III theta subunit, is expressed during both lysogenic and lytic growth stages. Mutat Res Fund Mol Mech Mutagen. 2007;624(1–2):1–8. doi: 10.1016/j.mrfmmm.2007.01.014
[23]  Heinrich J, Velleman M, Schuster H. The tripartite immunity system of phages P1 and P7. FEMS Microbiol Rev. 1995;17(1–2):121–6. pmid:7669337 doi: 10.1111/j.1574-6976.1995.tb00193.x
[24]  Heinzel T, Velleman M, Schuster H. C1 repressor of phage P1 is inactivated by noncovalent binding of P1 Coi protein. J Biol Chem. 1992;267(6):4183–8. pmid:1740459
[25]  Gruenig MC, Lu D, Won SJ, Dulberger CL, Manlick AJ, Keck JL, et al. Creating directed double-strand breaks with the Ref protein A novel RecA-Dependent nuclease from bacteriophage P1. J Biol Chem. 2011;286(10):8240–51. doi: 10.1074/jbc.M110.205088. pmid:21193392
[26]  Gruber AJ, Olsen TM, Dvorak RH, Cox MM. Function of the N-terminal segment of the RecA-dependent nuclease Ref. Nucleic Acids Res. 2015;43(3):1795–803. doi: 10.1093/nar/gku1330. pmid:25618854
[27]  Ronayne EA, Cox MM. RecA-dependent programmable endonuclease Ref cleaves DNA in two distinct steps. Nuc Acids Res. 2014;42:3871–83. doi: 10.1093/nar/gkt1342
[28]  Walker DC, Georgiou T, Pommer AJ, Walker D, Moore GR, Kleanthous C, et al. Mutagenic scan of the H-N-H motif of colicin E9: implications for the mechanistic enzymology of colicins, homing enzymes and apoptotic endonucleases. Nuc Acids Res. 2002;30(14):3225–34. doi: 10.1093/nar/gkf420
[29]  Laufer CS, Hays JB, Windle BE, Schaefer TS, Lee EH, Hays SL, et al. Enhancement of Escherichia coli plasmid and chromosomal recombination by the Ref function of bacteriophage P1. Genetics. 1989;123(3):465–76. pmid:2557261
[30]  Yu X, Egelman EH. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J Mol Biol. 1992;227(1):334–46. pmid:1522597 doi: 10.1016/0022-2836(92)90702-l
[31]  Di Capua E, Engel A, Stasiak A, Koller T. Characterization of complexes between RecA protein and duplex DNA by electron microscopy. J Mol Biol. 1982;157:87–103. pmid:7050394 doi: 10.1016/0022-2836(82)90514-9
[32]  Stasiak A, Di Capua E, Koller T. Elongation of duplex DNA by RecA protein. J Mol Biol. 1981;151:557–64. pmid:7040675 doi: 10.1016/0022-2836(81)90010-3
[33]  Egelman EH, Stasiak A. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATPγS or ATP. J Mol Biol. 1986;191(4):677–97. pmid:2949085 doi: 10.1016/0022-2836(86)90453-5
[34]  Cox MM. Recombinational DNA repair in bacteria and the RecA protein. Prog Nuc Acids Res Mol Biol. 2000;63:311–66.
[35]  Cox MM, Lehman IR. Enzymes of general recombination. Annu Rev Biochem. 1987;56:229–62. pmid:3304134 doi: 10.1146/annurev.bi.56.070187.001305
[36]  Cunningham RP, Wu AM, Shibata T, Das Gupta C, Radding CM. Homologous pairing and topological linkage of DNA molecules by combined action of E. coli RecA protein and topoisomerase I. Cell. 1981;24(1):213–23. pmid:6263487 doi: 10.1016/0092-8674(81)90517-1
[37]  Das Gupta C, Shibata T, Cunningham RP, Radding CM. The topology of homologous pairing promoted by RecA protein. Cell. 1980;22(2 Pt 2):437–46. pmid:7004644 doi: 10.1016/0092-8674(80)90354-2
[38]  Kahn R, Cunningham RP, Das Gupta C, Radding CM. Polarity of heteroduplex formation promoted by Escherichia coli RecA protein. Proc Natl Acad Sci USA. 1981;78(8):4786–90. pmid:6272272 doi: 10.1073/pnas.78.8.4786
[39]  West SC, Cassuto E, Howard-Flanders P. Heteroduplex formation by RecA protein: polarity of strand exchanges. Proc Natl Acad Sci USA. 1981;78(10):6149–53. pmid:6273854 doi: 10.1073/pnas.78.10.6149
[40]  Cox MM, Lehman IR. Directionality and polarity in RecA protein-promoted branch migration. Proc Natl Acad Sci USA. 1981;78(10):6018–22. pmid:6273839 doi: 10.1073/pnas.78.10.6018
[41]  Lusetti SL, Cox MM. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Ann Rev Biochem. 2002;71:71–100. pmid:12045091
[42]  Walker GC, Smith BT, Sutton MD. The SOS response to DNA damage. In: Storz G, HenggeAronis R, editors. Bacterial Stress Responses. Washington, D.C.: American Society of Microbiology; 2000. p. 131–44.
[43]  Linn LL, Little JW. Autodigestion and RecA-dependent cleavage of Ind- mutant LexA Proteins. J Mol Biol. 1989;210(3):473-. doi: 10.1016/0022-2836(89)90121-6
[44]  Little JW. Mechanism of specific LexA cleavage—autodigestion and the role of RecA coprotease. Biochimie. 1991;73(4):411–22. pmid:1911941 doi: 10.1016/0300-9084(91)90108-d
[45]  Little JW, Mount DW. The SOS regulatory system of Escherichia coli. Cell. 1982;29(1):11–22. pmid:7049397 doi: 10.1016/0092-8674(82)90085-x
[46]  Schoemaker JM, Gayda RC, Markovitz A. Regulation of cell division in Escherichia coli—SOS induction and cellular location of the SulA protein, a key to Lon-associated filamentation and death. J Bacteriol. 1984;158(2):551–61. pmid:6327610
[47]  Lewis K. Persister cells. Annu Rev Microbiol. 2010;64:357–72. doi: 10.1146/annurev.micro.112408.134306. pmid:20528688
[48]  Dorr T, Lewis K, Vulic M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics. 2009;5(12):e1000760. doi: 10.1371/journal.pgen.1000760. pmid:20011100
[49]  Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 2010;8(2):e1000317. doi: 10.1371/journal.pbio.1000317. pmid:20186264
[50]  Kim J, Noh J, Park W. Insight into norfloxacin resistance of Acinetobacter oleivorans DR1: Target gene mutation, persister, and RNA-Seq analyses. J Microbiol Biotech. 2013;23(9):1293–303. doi: 10.4014/jmb.1307.07059
[51]  Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA. 2009;106(12):4629–34. doi: 10.1073/pnas.0800442106. pmid:19255432
[52]  Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 2004;427(6969):72–4. pmid:14688795 doi: 10.1038/nature02241
[53]  Cirz RT, Chin JK, Andes DR, de Crecy-Lagard V, Craig WA, Romesberg FE. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol. 2005;3(6):1024–33. doi: 10.1371/journal.pbio.0030176
[54]  Lopez E, Elez M, Matic I, Blazquez J. Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli. Mol Microbiol. 2007;64(1):83–93. pmid:17376074 doi: 10.1111/j.1365-2958.2007.05642.x
[55]  Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev: MMBR. 1997;61(3):377–92. pmid:9293187
[56]  Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. pmid:11846609 doi: 10.1006/meth.2001.1262
[57]  Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, et al. High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res. 2007;35(18):6330–7. pmid:17881364 doi: 10.1093/nar/gkm712
[58]  Dole S, Nagarajavel V, Schnetz K. The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol Microbiol. 2004;52(2):589–600. pmid:15066043 doi: 10.1111/j.1365-2958.2004.04001.x
[59]  Dorman CJ. H-NS, the genome sentinel. Nature Rev Microbiol. 2007;5(2):157–61. doi: 10.1038/nrmicro1598
[60]  Owen-Hughes TA, Pavitt GD, Santos DS, Sidebotham JM, Hulton CS, Hinton JC, et al. The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell. 1992;71(2):255–65. pmid:1423593 doi: 10.1016/0092-8674(92)90354-f
[61]  Ali SS, Soo J, Rao C, Leung AS, Ngai DH, Ensminger AW, et al. Silencing by H-NS potentiated the evolution of Salmonella. PLoS Path. 2014;10(11):e1004500. doi: 10.1371/journal.ppat.1004500
[62]  Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol. 2007;14(5):441–8. pmid:17435766 doi: 10.1038/nsmb1233
[63]  Landick R, Wade JT, Grainger DC. H-NS and RNA polymerase: a love-hate relationship? Curr Opin Microbiol. 2015;24:53–9. doi: 10.1016/j.mib.2015.01.009. pmid:25638302
[64]  Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi: 10.1038/nature11252. pmid:22810696
[65]  Friedman N, Vardi S, Ronen M, Alon U, Stavans J. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol. 2005;3(7):1261–8. doi: 10.1371/journal.pbio.0030238
[66]  Sliusarenko O, Heinritz J, Emonet T, Jacobs-Wagner C. High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol. 2011;80(3):612–27. doi: 10.1111/j.1365-2958.2011.07579.x. pmid:21414037
[67]  Canceill D, Dervyn E, Huisman O,. Proteolysis and modulation of the activity of the cell division inhibitor SulA in Escherichia coli lon mutants. J Bacteriol. 1990;172(12):7297–300. pmid:2254289
[68]  Sandler SJ. Studies on the mechanism of reduction of UV-inducible sulAp expression by recF overexpression in Escherichia coli K-12. Mol Gen Genet. 1994;245(6):741–9. pmid:7830722 doi: 10.1007/bf00297281
[69]  Casaregola S, D'Ari R, Huisman O. Quantitative evaluation of recA gene expression in Escherichia coli. Mol Gen Genet. 1982;185(3):430–9. pmid:6212754 doi: 10.1007/bf00334135
[70]  McCool JD, Long E, Petrosino JF, Sandler HA, Rosenberg SM, Sandler SJ. Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol Microbiol. 2004;53(5):1343–57. pmid:15387814 doi: 10.1111/j.1365-2958.2004.04225.x
[71]  Malik M, Hussain S, Drlica K. Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother. 2007;51(1):28–34. pmid:17043118 doi: 10.1128/aac.00739-06
[72]  Szybalski W, Iyer VN. Crosslinking of DNA by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally "alkylating" antibiotics. Fed. Proc. 1964;23:946–57. pmid:14209827
[73]  Little JW. The SOS regulatory system: control of its state by the level of RecA protease. J Mol Biol. 1983;167(4):791–808. pmid:6410076 doi: 10.1016/s0022-2836(83)80111-9
[74]  Hartman PG. Molecular aspects and mechanism of action of dihydrofolate reductase inhibitors. Journal of chemotherapy. 1993;5(6):369–76. pmid:8195828
[75]  Lewin CS, Amyes SG. The role of the SOS response in bacteria exposed to zidovudine or trimethoprim. J Med Microbiol. 1991;34(6):329–32. pmid:1905356 doi: 10.1099/00222615-34-6-329
[76]  Lewis LK, Harlow GR, Greggjolly LA, Mount DW. Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J Mol Biol. 1994;241(4):507–23. pmid:8057377 doi: 10.1006/jmbi.1994.1528
[77]  Fornelos N, Bamford JKH, Mahillon J. Phage-borne factors and host LexA regulate the lytic switch in phage GIL01. J Bacteriol. 2011;193(21):6008–19. doi: 10.1128/JB.05618-11. pmid:21890699
[78]  McLenigan MP, Kulaeva OI, Ennis DG, Levine AS, Woodgate R. The bacteriophage P1 HumD protein is a functional homolog of the prokaryotic UmuD '-like proteins and facilitates SOS mutagenesis in Escherichia coli. J Bacteriol. 1999;181(22):7005–13. pmid:10559166
[79]  Huisman O, D'Ari R, Gottesman S. Cell-division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc Natl Acad Sci U S A. 1984;81(14):4490–4. pmid:6087326 doi: 10.1073/pnas.81.14.4490
[80]  Hay N, Cohen G. Requirement of E. coli DNA synthesis functions for the lytic replication of bacteriophage P1. Virology. 1983;131(1):193–206. pmid:6359668 doi: 10.1016/0042-6822(83)90545-7
[81]  Sutton MD. Coordinating DNA polymerase traffic during high and low fidelity synthesis. Biochim Biophysica Acta. 2010;1804(5):1167–79. doi: 10.1016/j.bbapap.2009.06.010
[82]  Silva MC, Nevin P, Ronayne EA, Beuning PJ. Selective disruption of the DNA polymerase III alpha-beta complex by the umuD gene products. Nuc Acids Res. 2012;40(12):5511–22. doi: 10.1093/nar/gks229
[83]  Kath JE, Jergic S, Heltzel JM, Jacob DT, Dixon NE, Sutton MD, et al. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. Proc Natl Acad Sci U S A. 2014;111(21):7647–52. doi: 10.1073/pnas.1321076111. pmid:24825884
[84]  Mirkin EV, Mirkin SM. Replication fork stalling at natural impediments. Microbiol Mol Biol Rev. 2007;71(1):13–35. pmid:17347517 doi: 10.1128/mmbr.00030-06
[85]  Gupta MK, Guy CP, Yeeles JT, Atkinson J, Bell H, Lloyd RG, et al. Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. Proc Natl Acad Sci U S A. 2013;110(18):7252–7. doi: 10.1073/pnas.1303890110. pmid:23589869
[86]  Marians KJ. Mechanisms of replication fork restart in Escherichia coli. Phil Trans Royal Soc London Series B, Biological sciences. 2004;359(1441):71–7. doi: 10.1098/rstb.2003.1366
[87]  Epshtein V, Nudler E. Cooperation between RNA polymerase molecules in transcription elongation. Science. 2003;300(5620):801–5. pmid:12730602 doi: 10.1126/science.1083219
[88]  Haeusser DP, Hoashi M, Weaver A, Brown N, Pan J, Sawitzke JA, et al. The Kil peptide of bacteriophage lambda blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genet. 2014;10(3):e1004217. doi: 10.1371/journal.pgen.1004217. pmid:24651041
[89]  Kiro R, Molshanski-Mor S, Yosef I, Milam SL, Erickson HP, Qimron U. Gene product 0.4 increases bacteriophage T7 competitiveness by inhibiting host cell division. Proc Natl Acad Sci U S A. 2013;110(48):19549–54. doi: 10.1073/pnas.1314096110. pmid:24218612
[90]  Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, et al. Cryptic prophages help bacteria cope with adverse environments. Nat Commun. 2010;1:147. doi: 10.1038/ncomms1146. pmid:21266997
[91]  Roach DR, Donovan DM. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage. 2015;5(3):e1062590. pmid:26442196 doi: 10.1080/21597081.2015.1062590
[92]  Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989.
[93]  Robinson A, Caldas VEA, Patel M, Wood EA, Punter CM, Ghodke H, et al. Regulation of mutagenic DNA polymerase V activation in space and time. 2015;11:e1005482 doi: 10.1371/journal.pgen.1005482
[94]  Chen SH, Byrne RT, Wood EA, Cox MM. Escherichia coli radD (yejH) gene: a novel function involved in radiation resistance and double-strand break repair. Mol Microbiol. 2015;95(5):754–68. doi: 10.1111/mmi.12885. pmid:25425430
[95]  Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97(12):6640–5. pmid:10829079 doi: 10.1073/pnas.120163297
[96]  Haft RJ, Keating DH, Schwaegler T, Schwalbach MS, Vinokur J, Tremaine M, et al. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A. 2014;111(25):E2576–85. doi: 10.1073/pnas.1401853111. pmid:24927582
[97]  Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–75. doi: 10.1038/nprot.2007.521. pmid:18274517
[98]  Zhou K, Zhou L, Lim Q, Zou R, Stephanopoulos G, Too HP. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC molecular biology. 2011;12:18. doi: 10.1186/1471-2199-12-18. pmid:21513543
[99]  Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife. 2015;4. doi: 10.7554/elife.04970
[100]  Lee TI, Johnstone SE, Young RA. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc. 2006;1(2):729–48. pmid:17406303 doi: 10.1038/nprot.2006.98
[101]  Neuendorf SK, Cox MM. Exchange of RecA protein between adjacent RecA protein-single-stranded DNA complexes. J Biol Chem. 1986;261(18):8276–82. pmid:3755133
[102]  Petrova V, Chitteni-Pattu S, Drees JC, Inman RB, Cox MM. An SOS inhibitor that binds to free RecA protein: The PsiB Protein. Mol Cell. 2009;36:121–30. doi: 10.1016/j.molcel.2009.07.026. pmid:19818715
[103]  Stohl EA, Gruenig MC, Cox MM, Seifert HS. Purification and Characterization of the RecA Protein from Neisseria gonorrhoeae. PLoS One. 2011;6(2). doi: 10.1371/journal.pone.0017101
[104]  Namsaraev EA, Baitin D, Bakhlanova IV, Alexseyev AA, Ogawa H, Lanzov VA. Biochemical basis of hyper-recombinogenic activity of Pseudomonas aeruginosa RecA protein in Escherichia coli cells. Mol Microbiol. 1998;27(4):727–38. pmid:9515699 doi: 10.1046/j.1365-2958.1998.00718.x

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133