全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

DOI: 10.1371/journal.pgen.1005755

Full-Text   Cite this paper   Add to My Lib

Abstract:

Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies.

References

[1]  Sj?blom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268–74. doi: 10.1126/science.1133427. pmid:16959974
[2]  Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9. Epub 2013/10/18. doi: 10.1038/nature12634 pmid:24132290; PubMed Central PMCID: PMC3927368.
[3]  Network TCGAR. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. doi: 10.1038/nature10166. pmid:21720365
[4]  Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol. 2013;231(1):21–34. doi: 10.1002/path.4230 pmid:23780408; PubMed Central PMCID: PMC3864404.
[5]  Hoogstraat M, de Pagter MS, Cirkel GA, van Roosmalen MJ, Harkins TT, Duran K, et al. Genomic and transcriptomic plasticity in treatment-naive ovarian cancer. Genome Res. 2014;24(2):200–11. Epub 2013/11/14. doi: 10.1101/gr.161026.113 pmid:24221193; PubMed Central PMCID: PMC3912411.
[6]  Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14(16):5198–208. doi: 10.1158/1078-0432.ccr-08-0196. pmid:18698038
[7]  Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW. Allelic Variation in Human Gene Expression. Science. 2002;297(5584):1143-. doi: 10.1126/science.1072545. pmid:12183620
[8]  Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH, et al. Allelic variation in gene expression is common in the human genome. Genome Res. 2003;13(8):1855–62. pmid:12902379
[9]  Smith RM, Webb A, Papp AC, Newman LC, Handelman SK, Suhy A, et al. Whole transcriptome RNA-Seq allelic expression in human brain. BMC Genomics. 2013;14(1). doi: 10.1186/1471-2164-14-571.
[10]  Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, et al. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics. 2009;25(24):3207–12. doi: 10.1093/bioinformatics/btp579. pmid:19808877
[11]  Crum C, Drapkin R, Miron A, Ince T, Muto M, Kindelberger D, et al. The distal fallopian tube: a new model for pelvic serous carcinogenesis. [Miscellaneous Article]. Current Opinion in Obstetrics \& Gynecology February 2007. 2007;19(1). doi: 10.1097/gco.0b013e328011a21f
[12]  Kim J, Coffey D, Creighton C, Yu Z, Hawkins S, Matzuk M. High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(10). doi: 10.1073/pnas.1117135109.
[13]  Vang R, Shih I-M, Kurman R. Fallopian tube precursors of ovarian low- and high-grade serous neoplasms. Histopathology. 2013;62(1). doi: 10.1111/his.12046.
[14]  Perets R, Wyant G, Muto K, Bijron J, Poole B, Chin K, et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 2013;24(6). doi: 10.1016/j.ccr.2013.10.013.
[15]  Yang-Hartwich Y, Gurrea-Soteras M, Sumi N, Joo W, Holmberg J, Craveiro V, et al. Ovulation and extra-ovarian origin of ovarian cancer. Scientific Reports. 2014;4. doi: 10.1038/srep06116.
[16]  Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA: a cancer journal for clinicians. 2009;59(4):225–49. Epub 2009/05/29. doi: 10.3322/caac.20006 pmid:19474385.
[17]  Benedetti-Panici P, Greggi S, Maneschi F, Scambia G, Amoroso M, Rabitti C, et al. Anatomical and pathological study of retroperitoneal nodes in epithelial ovarian cancer. Gynecol Oncol. 1993;51(2):150–4. Epub 1993/11/01. doi: 10.1006/gyno.1993.1263 pmid:8276287.
[18]  Morice P, Joulie F, Camatte S, Atallah D, Rouzier R, Pautier P, et al. Lymph node involvement in epithelial ovarian cancer: analysis of 276 pelvic and paraaortic lymphadenectomies and surgical implications. Journal of the American College of Surgeons. 2003;197(2):198–205. Epub 2003/08/02. doi: 10.1016/S1072-7515(03)00234-5 pmid:12892797.
[19]  Onda T, Yoshikawa H, Yokota H, Yasugi T, Taketani Y. Assessment of metastases to aortic and pelvic lymph nodes in epithelial ovarian carcinoma. A proposal for essential sites for lymph node biopsy. Cancer. 1996;78(4):803–8. Epub 1996/08/15. doi: 10.1002/(SICI)1097-0142(19960815)78:4<803::AID-CNCR17>3.0.CO;2-Z pmid:8756375.
[20]  Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, et al. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res. 2008;68(13):5478–86. Epub 2008/07/03. doi: 10.1158/0008-5472.CAN-07-6595 pmid:18593951.
[21]  Malek JA, Martinez A, Mery E, Ferron G, Huang R, Raynaud C, et al. Gene expression analysis of matched ovarian primary tumors and peritoneal metastasis. Journal of translational medicine. 2012;10:121. Epub 2012/06/13. doi: 10.1186/1479-5876-10-121 pmid:22687175; PubMed Central PMCID: PMC3477065.
[22]  Malek JA, Mery E, Mahmoud YA, Al-Azwani EK, Roger L, Huang R, et al. Copy Number Variation Analysis of Matched Ovarian Primary Tumors and Peritoneal Metastasis. PLoS ONE. 2011;6(12). doi: 10.1371/journal.pone.0028561.
[23]  Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501(7467):355–64. Epub 2013/09/21. doi: 10.1038/nature12627 pmid:24048068.
[24]  Rose PG, Piver MS, Tsukada Y, Lau TS. Metastatic patterns in histologic variants of ovarian cancer. An autopsy study. Cancer. 1989;64(7):1508–13. pmid:2776109 doi: 10.1002/1097-0142(19891001)64:7<1508::aid-cncr2820640725>3.0.co;2-v
[25]  Reinartz S, Failer S, Schuell T, Wagner U. CA125 (MUC16) gene silencing suppresses growth properties of ovarian and breast cancer cells. Eur J Cancer. 2012;48(10):1558–69. doi: 10.1016/j.ejca.2011.07.004. pmid:21852110
[26]  Thériault C, Pinard M, Comamala M, Migneault M, Beaudin J, Matte I, et al. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol Oncol. 2011;121(3):434–43. doi: 10.1016/j.ygyno.2011.02.020. pmid:21421261
[27]  Chen S-H, Dallas MR, Balzer EM, Konstantopoulos K. Mucin 16 is a functional selectin ligand on pancreatic cancer cells. FASEB J. 2012;26(3):1349–59. doi: 10.1096/fj.11-195669. pmid:22159147
[28]  Pavelin S, Becic K, Forempoher G, Mrklic I, Pogorelic Z, Titlic M, et al. Expression of Ki-67 and p53 in meningiomas. Neoplasma. 2013;60(5):480–5. doi: 10.4149/neo_2013_062. pmid:23790165
[29]  Jin Q, Zhang W, Qiu X-g, Yan W, You G, Liu Y-w, et al. Gene expression profiling reveals Ki-67 associated proliferation signature in human glioblastoma. Chinese medical journal. 2011;124(17):2584–8. pmid:22040407
[30]  Rahmanzadeh R, Rai P, Celli JP, Rizvi I, Baron-Lühr B, Gerdes J, et al. Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer. Cancer Res. 2010;70(22):9234–42. doi: 10.1158/0008-5472.can-10-1190. pmid:21045152
[31]  Tawfik K, Kimler BF, Davis MK, Fan F, Tawfik O. Ki-67 expression in axillary lymph node metastases in breast cancer is prognostically significant. Human Pathology. 2013;44(1):39–46. doi: 10.1016/j.humpath.2012.05.007. pmid:22939959
[32]  Okuma E, Ohishi Y, Oda Y, Aishima S, Kurihara S, Nishimura I, et al. Cytoplasmic and stromal expression of laminin γ 2 chain correlates with infiltrative invasion in ovarian mucinous neoplasms of gastro-intestinal type. Oncology reports. 2010;24(6):1569–76. pmid:21042753 doi: 10.3892/or_00001019
[33]  Masuda R, Kijima H, Imamura N, Aruga N, Nakazato K, Oiwa K, et al. Laminin-5γ2 chain expression is associated with tumor cell invasiveness and prognosis of lung squamous cell carcinoma. Biomed Res. 2012;33(5):309–17. pmid:23124251 doi: 10.2220/biomedres.33.309
[34]  Katayama M, Sanzen N, Funakoshi A, Sekiguchi K. Laminin gamma2-chain fragment in the circulation: a prognostic indicator of epithelial tumor invasion. Cancer Res. 2003;63(1):222–9. pmid:12517801
[35]  Chmielecki J, Ross JS, Wang K, Frampton GM, Palmer GA, Ali SM, et al. Oncogenic alterations in ERBB2/HER2 represent potential therapeutic targets across tumors from diverse anatomic sites of origin. Oncologist. 2015;20(1):7–12. doi: 10.1634/theoncologist.2014-0234 pmid:25480824; PubMed Central PMCID: PMCPMC4294606.
[36]  Martin B, Paesmans M, Mascaux C, Berghmans T, Lothaire P, Meert AP, et al. Ki-67 expression and patients survival in lung cancer: systematic review of the literature with meta-analysis. Br J Cancer. 2004;91(12):2018–25. doi: 10.1038/sj.bjc.6602233. pmid:15545971
[37]  Glaab E, Baudot A, Krasnogor N, Valencia A. TopoGSA: network topological gene set analysis. Bioinformatics. 2010;26(9):1271–2. doi: 10.1093/bioinformatics/btq131 pmid:20335277; PubMed Central PMCID: PMC2859135.
[38]  Winterhalter C, Widera P, Krasnogor N. JEPETTO: a Cytoscape plugin for gene set enrichment and topological analysis based on interaction networks. Bioinformatics. 2014;30(7):1029–30. doi: 10.1093/bioinformatics/btt732 pmid:24363376; PubMed Central PMCID: PMC3967109.
[39]  Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014;42(Database issue):D472–7. doi: 10.1093/nar/gkt1102 pmid:24243840; PubMed Central PMCID: PMC3965010.
[40]  Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, et al. Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel). 2012;4(4):1180–211. doi: 10.3390/cancers4041180 pmid:24213504; PubMed Central PMCID: PMC3712731.
[41]  Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya PS, Lepsik M, Hajduch M. Aurora kinase inhibitors: progress towards the clinic. Invest New Drugs. 2012;30(6):2411–32. doi: 10.1007/s10637-012-9798-6 pmid:22350019; PubMed Central PMCID: PMCPMC3484309.
[42]  Shoemaker R, Deng J, Wang W, Zhang K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Research. 2010;20(7):883–9. doi: 10.1101/gr.104695.109. WOS:000279404700002. pmid:20418490
[43]  Supek F, Minana B, Valcarcel J, Gabaldon T, Lehner B. Synonymous Mutations Frequently Act as Driver Mutations in Human Cancers. Cell. 2014;156(6):1324–35. doi: 10.1016/j.cell.2014.01.051. WOS:000332945100020. pmid:24630730
[44]  Wu J, Guan X, Li Y-T, Bai P, Wu J. Matrix metalloproteinase7 -181A/G polymorphism is associated with increased cancer risk among high-quality studies: Evidence from a meta-analysis. Clinical Biochemistry. 2013;46:1649–54. doi: 10.1016/j.clinbiochem.2013.07.015. pmid:23895900
[45]  Didem T, Faruk T, Senem K, Derya D, Murat S, Murat G, et al. Clinical significance of serum tenascin-c levels in epithelial ovarian cancer. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35:6777–82. doi: 10.1007/s13277-014-1923-z.
[46]  Rafii A, Halabi N, Malek J. High-prevalence and broad spectrum of Cell Adhesion and Extracellular Matrix gene pathway mutations in epithelial ovarian cancer. Journal of Clinical Bioinformatics. 2012;2(1). doi: 10.1186/2043-9113-2-15.
[47]  Zhang W, Liu Y, Sun N, Wang D, Boyd-Kirkup J, Dou X, et al. Integrating genomic, epigenomic, and transcriptomic features reveals modular signatures underlying poor prognosis in ovarian cancer. Cell reports. 2013;4(3):542–53. Epub 2013/08/13. doi: 10.1016/j.celrep.2013.07.010 pmid:23933257.
[48]  Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. Epub 2009/05/20. doi: 10.1093/bioinformatics/btp324 pmid:19451168; PubMed Central PMCID: PMC2705234.
[49]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. Epub 2009/06/10. doi: 10.1093/bioinformatics/btp352 pmid:19505943; PubMed Central PMCID: PMC2723002.
[50]  Bauer D. Variant calling comparison CASAVA1.8 and GATK. Nature Precedings. 2011. doi: 10.1038/npre.2011.6107.1.
[51]  McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. Epub 2010/07/21. doi: 10.1101/gr.107524.110 pmid:20644199; PubMed Central PMCID: PMC2928508.
[52]  Dobin A, Davis C, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR}: ultrafast universal {RNA}-seq aligner. Bioinformatics. 2013;29(1). doi: 10.1093/bioinformatics/bts635.
[53]  Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 2009;25(17):2283–5. doi: 10.1093/bioinformatics/btp373 pmid:19542151; PubMed Central PMCID: PMC2734323.
[54]  Koboldt DC, Larson DE, Wilson RK. Using VarScan 2 for Germline Variant Calling and Somatic Mutation Detection. Curr Protoc Bioinformatics. 2013;44:15 4 1–4 7. doi: 10.1002/0471250953.bi1504s44 pmid:25553206; PubMed Central PMCID: PMC4278659.
[55]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England). 2009;25(16):2078–9. doi: 10.1093/bioinformatics/btp352.
[56]  Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;112(17):5473–8. doi: 10.1073/pnas.1418631112 pmid:25827230; PubMed Central PMCID: PMC4418901.
[57]  Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6(2):80–92. Epub 2012/06/26. doi: 10.4161/fly.19695 pmid:22728672.
[58]  Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet. 2008;Chapter 10:Unit-10.1. doi: 10.1002/0471142905.hg1011s57
[59]  Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30. Epub 2013/11/15. doi: 10.1093/bioinformatics/btt656 pmid:24227677.
[60]  Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. doi: 10.1093/bioinformatics/btp616. pmid:19910308
[61]  Schroeder M, Gonzalez-Perez A, Lopez-Bigas N. Visualizing multidimensional cancer genomics data. Genome medicine. 2013;5(1). doi: 10.1186/gm413.
[62]  Hulsen T, de Vlieg J, Alkema W. BioVenn—a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. Bmc Genomics. 2008;9. Artn 488 doi: 10.1186/1471-2164-9-488. WOS:000261169600001. pmid:18925949

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413