全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Prp4 Kinase Grants the License to Splice: Control of Weak Splice Sites during Spliceosome Activation

DOI: 10.1371/journal.pgen.1005768

Full-Text   Cite this paper   Add to My Lib

Abstract:

The genome of the fission yeast Schizosaccharomyces pombe encodes 17 kinases that are essential for cell growth. These include the cell-cycle regulator Cdc2, as well as several kinases that coordinate cell growth, polarity, and morphogenesis during the cell cycle. In this study, we further characterized another of these essential kinases, Prp4, and showed that the splicing of many introns is dependent on Prp4 kinase activity. For detailed characterization, we chose the genes res1 and ppk8, each of which contains one intron of typical size and position. Splicing of the res1 intron was dependent on Prp4 kinase activity, whereas splicing of the ppk8 intron was not. Extensive mutational analyses of the 5’ splice site of both genes revealed that proper transient interaction with the 5’ end of snRNA U1 governs the dependence of splicing on Prp4 kinase activity. Proper transient interaction between the branch sequence and snRNA U2 was also important. Therefore, the Prp4 kinase is required for recognition and efficient splicing of introns displaying weak exon1/5’ splice sites and weak branch sequences.

References

[1]  Will CL, Lührmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3. doi: 10.1101/cshperspect.a003707
[2]  Cordin O, Hahn D, Beggs JD (2012) Structure, function and regulation of spliceosomal RNA helicases. Curr Opin Cell Biol 24: 431–438. doi: 10.1016/j.ceb.2012.03.004. pmid:22464735
[3]  Egecioglu DE, Chanfreau G (2011) Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control. RNA 17: 383–389. doi: 10.1261/rna.2454711. pmid:21205840
[4]  Han J, Xiong J, Wang D, Fu XD (2011) Pre-mRNA splicing: where and when in the nucleus. Trends Cell Biol 21: 336–343. doi: 10.1016/j.tcb.2011.03.003. pmid:21514162
[5]  Rino J, Carmo-Fonseca M (2009) The spliceosome: a self-organized macromolecular machine in the nucleus? Trends Cell Biol 19: 375–384. doi: 10.1016/j.tcb.2009.05.004. pmid:19616950
[6]  Kuhn AN, K?ufer NF (2003) Pre-mRNA splicing in Schizosaccharomyces pombe: regulatory role of a kinase conserved from fission yeast to mammals. Curr Genet 42: 241–251. pmid:12589463
[7]  Kupfer DM, Drabenstot SD, Buchanan KL, Lai H, Zhu H, et al. (2004) Introns and splicing elements of five diverse fungi. Eukaryot Cell 3: 1088–1100. pmid:15470237 doi: 10.1128/ec.3.5.1088-1100.2004
[8]  Gao K, Masuda A, Matsuura T, Ohno K (2008) Human branch point consensus sequence is yUnAy. Nucleic Acids Res 36: 2257–2267. doi: 10.1093/nar/gkn073. pmid:18285363
[9]  Grützmann K, Szafranski K, Pohl M, Voigt K, Petzold A, et al. (2014) Fungal alternative splicing is associated with multicellular complexity and virulence: a genome-wide multi-species study. DNA Res 21: 27–39. doi: 10.1093/dnares/dst038. pmid:24122896
[10]  Malapeira J, Móldon A, Hidalgo E, Smith GR, Nurse P, et al. (2005) A meiosis-specific cyclin regulated by splicing is required for proper progression through meiosis. Mol Cell Biol 25: 6330–6337. pmid:16024772 doi: 10.1128/mcb.25.15.6330-6337.2005
[11]  Móldon A, Malapeira J, Gabrielli N, Gogol M, Gómez-Escoda B, et al. (2008) Promoter-driven splicing regulation in fission yeast. Nature 455: 997–1000. doi: 10.1038/nature07325. pmid:18815595
[12]  Plass M, Agirre E, Reyes D, Camara F, Eyras E (2008) Co-evolution of the branch site and SR proteins in eukaryotes. Trends Genet 24: 590–594. doi: 10.1016/j.tig.2008.10.004. pmid:18992956
[13]  Lützelberger M, K?ufer NF (2012) The Prp4 Kinase: Its Substrates, Function and Regulation in Pre-mRNA Splicing. In: Dr. Huang Cai (Ed.), editor. Protein Phosphorylation in Human Health: InTech.
[14]  Lützelberger M, Bottner CA, Schwelnus W, Zock-Emmenthal S, Razanau A, et al. (2010) The N-terminus of Prp1 (Prp6/U5-102 K) is essential for spliceosome activation in vivo. Nucleic Acids Res 38: 1610–1622. doi: 10.1093/nar/gkp1155. pmid:20007600
[15]  Schwelnus W, Richert K, Opitz F, Gross T, Habara Y, et al. (2001) Fission yeast Prp4p kinase regulates pre-mRNA splicing by phosphorylating a non-SR-splicing factor. EMBO Rep 2: 35–41. pmid:11252721 doi: 10.1093/embo-reports/kve009
[16]  Kojima T, Zama T, Wada K, Onogi H, Hagiwara M (2001) Cloning of human PRP4 reveals interaction with Clk1. J Biol Chem 276: 32247–32256. pmid:11418604 doi: 10.1074/jbc.m103790200
[17]  Schneider M, Hsiao HH, Will CL, Giet R, Urlaub H, et al. (2010) Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation. Nat Struct Mol Biol 17: 216–221. doi: 10.1038/nsmb.1718. pmid:20118938
[18]  Busch A, Hertel KJ (2012) Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip Rev RNA 3: 1–12. doi: 10.1002/wrna.100. pmid:21898828
[19]  Bradley T, Cook ME, Blanchette M (2015) SR proteins control a complex network of RNA-processing events. RNA 21: 75–92. doi: 10.1261/rna.043893.113. pmid:25414008
[20]  Erkelenz S, Mueller WF, Evans MS, Busch A, Sch?neweis K, et al. (2013) Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA 19: 96–102. doi: 10.1261/rna.037044.112. pmid:23175589
[21]  Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6: 1197–1211. pmid:10999598 doi: 10.1017/s1355838200000960
[22]  Sanford JR, Ellis J, Cáceres JF (2005) Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans 33: 443–446. pmid:15916537 doi: 10.1042/bst0330443
[23]  Cho S, Hoang A, Sinha R, Zhong XY, Fu XD, et al. (2011) Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc Natl Acad Sci U S A 108: 8233–8238. doi: 10.1073/pnas.1017700108. pmid:21536904
[24]  Wu JY, Maniatis T (1993) Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061–1070. pmid:8261509 doi: 10.1016/0092-8674(93)90316-i
[25]  Kohtz JD, Jamison SF, Will CL, Zuo P, Lührmann R, et al. (1994) Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors. Nature 368: 119–124. pmid:8139654 doi: 10.1038/368119a0
[26]  Wang Z, Hoffmann HM, Grabowski PJ (1995) Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity. RNA 1: 21–35. pmid:7489484
[27]  Gross T, Richert K, Mierke C, Lützelberger M, K?ufer NF (1998) Identification and characterization of srp1, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors. Nucleic Acids Res 26: 505–511. pmid:9421507 doi: 10.1093/nar/26.2.505
[28]  Lützelberger M, Gross T, K?ufer NF (1999) Srp2, an SR protein family member of fission yeast: in vivo characterization of its modular domains. Nucleic Acids Res 27: 2618–2626. pmid:10373577 doi: 10.1093/nar/27.13.2618
[29]  Tang Z, K?ufer NF, Lin RJ (2002) Interactions between two fission yeast serine/arginine-rich proteins and their modulation by phosphorylation. Biochem J 368: 527–534. pmid:12186627 doi: 10.1042/bj20021133
[30]  Gro? T, Richert K, Mierke C, Lützelberger M, K?ufer NF (1998) Identification and characterization of srp1, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors. Nucleic Acids Res 26: 505–511. pmid:9421507 doi: 10.1093/nar/26.2.505
[31]  Coudreuse D, Nurse P (2010) Driving the cell cycle with a minimal CDK control network. Nature 468: 1074–1079. doi: 10.1038/nature09543. pmid:21179163
[32]  Ayté J, Schweitzer C, Zarzov P, Nurse P, DeCaprio JA (2001) Feedback regulation of the MBF transcription factor by cyclin Cig2. Nat Cell Biol 3: 1043–1050. pmid:11781565 doi: 10.1038/ncb1201-1043
[33]  Gómez-Escoda B, Ivanova T, Calvo IA, Alves-Rodrigues I, Hidalgo E, et al. (2011) Yox1 links MBF-dependent transcription to completion of DNA synthesis. EMBO Rep 12: 84–89. doi: 10.1038/embor.2010.187. pmid:21132016
[34]  Tanaka K, Okazaki K, Okazaki N, Ueda T, Sugiyama A, et al. (1992) A new cdc gene required for S phase entry of Schizosaccharomyces pombe encodes a protein similar to the cdc 10+ and SWI4 gene products. EMBO J 11: 4923–4932. pmid:1464317
[35]  Miyamoto M, Tanaka K, Okayama H (1994) res2+, a new member of the cdc10+/SWI4 family, controls the 'start' of mitotic and meiotic cycles in fission yeast. EMBO J 13: 1873–1880. pmid:8168485
[36]  Hamada M, Huang Y, Lowe TM, Maraia RJ (2001) Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Mol Cell Biol 21: 6870–6881. pmid:11564871 doi: 10.1128/mcb.21.20.6870-6881.2001
[37]  Sridharan V, Heimiller J, Singh R (2011) Genomic mRNA profiling reveals compensatory mechanisms for the requirement of the essential splicing factor U2AF. Mol Cell Biol 31: 652–661. doi: 10.1128/MCB.01000-10. pmid:21149581
[38]  Banerjee S, Khandelia P, Melangath G, Bashir S, Nagampalli V, et al. (2013) Splicing functions and global dependency on fission yeast slu7 reveal diversity in spliceosome assembly. Mol Cell Biol 33: 3125–3136. doi: 10.1128/MCB.00007-13. pmid:23754748
[39]  Wood V, Harris MA, McDowall MD, Rutherford K, Vaughan BW, et al. (2012) PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Res 40: D695–699. doi: 10.1093/nar/gkr853. pmid:22039153
[40]  Zhuang Y, Weiner AM (1986) A compensatory base change in U1 snRNA suppresses a 5' splice site mutation. Cell 46: 827–835. pmid:3757028 doi: 10.1016/0092-8674(86)90064-4
[41]  Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA (1980) Are snRNPs involved in splicing? Nature 283: 220–224. pmid:7350545 doi: 10.1038/283220a0
[42]  Siliciano PG, Guthrie C (1988) 5' splice site selection in yeast: genetic alterations in base-pairing with U1 reveal additional requirements. Genes Dev 2: 1258–1267. pmid:3060402 doi: 10.1101/gad.2.10.1258
[43]  Roca X, Krainer AR, Eperon IC (2013) Pick one, but be quick: 5' splice sites and the problems of too many choices. Genes Dev 27: 129–144. doi: 10.1101/gad.209759.112. pmid:23348838
[44]  Porter G, Brennwald P, Wise JA (1990) U1 small nuclear RNA from Schizosaccharomyces pombe has unique and conserved features and is encoded by an essential single-copy gene. Mol Cell Biol 10: 2874–2881. pmid:2188102 doi: 10.1128/mcb.10.6.2874
[45]  Gu J, Patton JR, Shimba S, Reddy R (1996) Localization of modified nucleotides in Schizosaccharomyces pombe spliceosomal small nuclear RNAs: modified nucleotides are clustered in functionally important regions. RNA 2: 909–918. pmid:8809017
[46]  Roca X, Sachidanandam R, Krainer AR (2005) Determinants of the inherent strength of human 5' splice sites. RNA 11: 683–698. pmid:15840817 doi: 10.1261/rna.2040605
[47]  Yu AT, Ge J, Yu YT (2011) Pseudouridines in spliceosomal snRNAs. Protein Cell 2: 712–725. doi: 10.1007/s13238-011-1087-1. pmid:21976061
[48]  Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, et al. (2014) The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res 42: 3492–3501. doi: 10.1093/nar/gkt1330. pmid:24369424
[49]  Lewin B (1980) Alternatives for splicing: recognizing the ends of introns. Cell 22: 324–326. pmid:6160915 doi: 10.1016/0092-8674(80)90340-2
[50]  Prabhala G, Rosenberg GH, Kaufer NF (1992) Architectural features of pre-mRNA introns in the fission yeast Schizosaccharomyces pombe. Yeast 8: 171–182. pmid:1574925 doi: 10.1002/yea.320080303
[51]  Bitton DA, Rallis C, Jeffares DC, Smith GC, Chen YY, et al. (2014) LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Res 24: 1169–1179. doi: 10.1101/gr.166819.113. pmid:24709818
[52]  Parker R, Siliciano PG, Guthrie C (1987) Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49: 229–239. pmid:3552247 doi: 10.1016/0092-8674(87)90564-2
[53]  Berglund JA, Rosbash M, Schultz SC (2001) Crystal structure of a model branchpoint-U2 snRNA duplex containing bulged adenosines. RNA 7: 682–691. pmid:11350032 doi: 10.1017/s1355838201002187
[54]  Newby MI, Greenbaum NL (2002) Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine. Nat Struct Biol 9: 958–965. pmid:12426583 doi: 10.1038/nsb873
[55]  Carmel I, Tal S, Vig I, Ast G (2004) Comparative analysis detects dependencies among the 5' splice-site positions. RNA 10: 828–840. pmid:15100438 doi: 10.1261/rna.5196404
[56]  Ast G (2004) How did alternative splicing evolve? Nat Rev Genet 5: 773–782. pmid:15510168 doi: 10.1038/nrg1451
[57]  Davis DR (1995) Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res 23: 5020–5026. pmid:8559660 doi: 10.1093/nar/23.24.5020
[58]  Hudson GA, Bloomingdale RJ, Znosko BM (2013) Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides. RNA 19: 1474–1482. doi: 10.1261/rna.039610.113. pmid:24062573
[59]  Query CC, Moore MJ, Sharp PA (1994) Branch nucleophile selection in pre-mRNA splicing: evidence for the bulged duplex model. Genes Dev 8: 587–597. pmid:7926752 doi: 10.1101/gad.8.5.587
[60]  Webb CJ, Wise JA (2004) The splicing factor U2AF small subunit is functionally conserved between fission yeast and humans. Mol Cell Biol 24: 4229–4240. pmid:15121844 doi: 10.1128/mcb.24.10.4229-4240.2004
[61]  Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. Handbook of Genetics Vol1. Plenum Press, New York: King RC (Ed.). pp. pp. 395–446.
[62]  Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795–823. pmid:2005825 doi: 10.1016/0076-6879(91)94059-l
[63]  Cipak L, Zhang C, Kovacikova I, Rumpf C, Miadokova E, et al. (2011) Generation of a set of conditional analog-sensitive alleles of essential protein kinases in the fission yeast Schizosaccharomyces pombe. Cell Cycle 10: 3527–3532. doi: 10.4161/cc.10.20.17792. pmid:22030861
[64]  Gregan J, Zhang C, Rumpf C, Cipak L, Li Z, et al. (2007) Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nat Protoc 2: 2996–3000. pmid:18007635 doi: 10.1038/nprot.2007.447
[65]  Oldenburg KR, Vo KT, Michaelis S, Paddon C (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25: 451–452. pmid:9016579 doi: 10.1093/nar/25.2.451
[66]  Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37: 6984–6990. doi: 10.1093/nar/gkp687. pmid:19745056
[67]  Sato M, Dhut S, Toda T (2005) New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe. Yeast 22: 583–591. pmid:15942936 doi: 10.1002/yea.1233
[68]  B?hler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, et al. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943–951. pmid:9717240 doi: 10.1002/(sici)1097-0061(199807)14:10<943::aid-yea292>3.3.co;2-p
[69]  Basi G, Schmid E, Maundrell K (1993) TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123: 131–136. pmid:8422997 doi: 10.1016/0378-1119(93)90552-e
[70]  Maundrell K (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123: 127–130. pmid:8422996 doi: 10.1016/0378-1119(93)90551-d
[71]  Lassmann T, Hayashizaki Y, Daub CO (2009) TagDust—a program to eliminate artifacts from next generation sequencing data. Bioinformatics 25: 2839–2840. doi: 10.1093/bioinformatics/btp527. pmid:19737799
[72]  Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111. doi: 10.1093/bioinformatics/btp120. pmid:19289445
[73]  Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842. doi: 10.1093/bioinformatics/btq033. pmid:20110278
[74]  Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14: 1188–1190. pmid:15173120 doi: 10.1101/gr.849004

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133