全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

DOI: 10.1371/journal.pgen.1005783

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

References

[1]  Bottomley SS (2006) Congenital sideroblastic anemias. Current hematology reports 5: 41–49. pmid:16537045
[2]  Camaschella C (2009) Hereditary sideroblastic anemias: pathophysiology, diagnosis, and treatment. Seminars in hematology 46: 371–377. doi: 10.1053/j.seminhematol.2009.07.001. pmid:19786205
[3]  Cazzola M, Invernizzi R (2011) Ring sideroblasts and sideroblastic anemias. Haematologica 96: 789–792. doi: 10.3324/haematol.2011.044628. pmid:21632840
[4]  Dailey HA, Meissner PN (2013) Erythroid heme biosynthesis and its disorders. Cold Spring Harbor perspectives in medicine 3: a011676. doi: 10.1101/cshperspect.a011676. pmid:23471474
[5]  Iolascon A, De Falco L, Beaumont C (2009) Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis. Haematologica 94: 395–408. doi: 10.3324/haematol.13619. pmid:19181781
[6]  Guernsey DL, Jiang H, Campagna DR, Evans SC, Ferguson M, et al. (2009) Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nature genetics 41: 651–653. doi: 10.1038/ng.359. pmid:19412178
[7]  Prades E, Chambon C, Dailey TA, Dailey HA, Briere J, et al. (1995) A new mutation of the ALAS2 gene in a large family with X-linked sideroblastic anemia. Human genetics 95: 424–428. pmid:7705839 doi: 10.1007/bf00208968
[8]  Cotter PD, Rucknagel DL, Bishop DF (1994) X-linked sideroblastic anemia: identification of the mutation in the erythroid-specific delta-aminolevulinate synthase gene (ALAS2) in the original family described by Cooley. Blood 84: 3915–3924. pmid:7949148
[9]  Kannengiesser C, Sanchez M, Sweeney M, Hetet G, Kerr B, et al. (2011) Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia. Haematologica 96: 808–813. doi: 10.3324/haematol.2010.039164. pmid:21393332
[10]  Fleming MD (2011) Congenital sideroblastic anemias: iron and heme lost in mitochondrial translation. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program 2011: 525–531. doi: 10.1182/asheducation-2011.1.525. pmid:22160084
[11]  Telfer P, Coen PG, Christou S, Hadjigavriel M, Kolnakou A, et al. (2006) Survival of medically treated thalassemia patients in Cyprus. Trends and risk factors over the period 1980–2004. Haematologica 91: 1187–1192. pmid:16956817
[12]  Dubourg L, Laurain C, Ranchin B, Pondarre C, Hadj-Aissa A, et al. (2012) Deferasirox-induced renal impairment in children: an increasing concern for pediatricians. Pediatric nephrology 27: 2115–2122. doi: 10.1007/s00467-012-2170-4. pmid:22527533
[13]  Allain JP, Stramer SL, Carneiro-Proietti AB, Martins ML, Lopes da Silva SN, et al. (2009) Transfusion-transmitted infectious diseases. Biologicals: journal of the International Association of Biological Standardization 37: 71–77. doi: 10.1016/j.biologicals.2009.01.002
[14]  Gutierrez-Aguilar M, Baines CP (2013) Physiological and pathological roles of mitochondrial SLC25 carriers. The Biochemical journal 454: 371–386. doi: 10.1042/BJ20121753. pmid:23988125
[15]  McNeil JB, Bognar AL, Pearlman RE (1996) In vivo analysis of folate coenzymes and their compartmentation in Saccharomyces cerevisiae. Genetics 142: 371–381. pmid:8852837
[16]  Depeint F, Bruce WR, Shangari N, Mehta R, O'Brien PJ (2006) Mitochondrial function and toxicity: role of B vitamins on the one-carbon transfer pathways. Chemico-biological interactions 163: 113–132. pmid:16814759 doi: 10.1016/j.cbi.2006.05.010
[17]  Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nature reviews Cancer 13: 572–583. doi: 10.1038/nrc3557. pmid:23822983
[18]  Tibbetts AS, Appling DR (2010) Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annual review of nutrition 30: 57–81. doi: 10.1146/annurev.nutr.012809.104810. pmid:20645850
[19]  Wang W, Wu Z, Dai Z, Yang Y, Wang J, et al. (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino acids 45: 463–477. doi: 10.1007/s00726-013-1493-1. pmid:23615880
[20]  Kastanos EK, Woldman YY, Appling DR (1997) Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae. Biochemistry 36: 14956–14964. pmid:9398220 doi: 10.1021/bi971610n
[21]  Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, et al. (2007) Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134: 4147–4156. pmid:17959717 doi: 10.1242/dev.012385
[22]  Brownlie A, Donovan A, Pratt SJ, Paw BH, Oates AC, et al. (1998) Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet 20: 244–250. pmid:9806542
[23]  Berman J, Payne E, Hall C (2012) The zebrafish as a tool to study hematopoiesis, human blood diseases, and immune function. Advances in hematology 2012: 425345. doi: 10.1155/2012/425345. pmid:23082077
[24]  Shaw GC, Cope JJ, Li L, Corson K, Hersey C, et al. (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440: 96–100. pmid:16511496 doi: 10.1038/nature04512
[25]  Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, et al. (2015) Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Cell 161: 858–867. doi: 10.1016/j.cell.2015.04.017. pmid:25957689
[26]  Lin BF, Huang RF, Shane B (1993) Regulation of folate and one-carbon metabolism in mammalian cells. III. Role of mitochondrial folylpoly-gamma-glutamate synthetase. J Biol Chem 268: 21674–21679. pmid:8408020
[27]  Shin YS, Chan C, Vidal AJ, Brody T, Stokstad EL (1976) Subcellular localization of gamma-glutamyl carboxypeptidase and of folates. Biochim Biophys Acta 444: 794–801. pmid:186108 doi: 10.1016/0304-4165(76)90326-3
[28]  McCarthy EA, Titus SA, Taylor SM, Jackson-Cook C, Moran RG (2004) A mutation inactivating the mitochondrial inner membrane folate transporter creates a glycine requirement for survival of chinese hamster cells. J Biol Chem 279: 33829–33836. pmid:15140890 doi: 10.1074/jbc.m403677200
[29]  Pfendner W, Pizer LI (1980) The metabolism of serine and glycine in mutant lines of Chinese hamster ovary cells. Arch Biochem Biophys 200: 503–512. pmid:6776895 doi: 10.1016/0003-9861(80)90382-3
[30]  McBurney MW, Whitmore GF (1974) Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells. Cell 2: 173–182. pmid:4547236 doi: 10.1016/0092-8674(74)90091-9
[31]  Taylor RT, Hanna ML (1982) Folate-dependent enzymes in cultured Chinese hamster ovary cells: impaired mitochondrial serine hydroxymethyltransferase activity in two additional glycine—auxotroph complementation classes. Arch Biochem Biophys 217: 609–623. pmid:7138028 doi: 10.1016/0003-9861(82)90543-4
[32]  Stover PJ, Field MS (2011) Trafficking of intracellular folates. Adv Nutr 2: 325–331. doi: 10.3945/?an.111.000596. pmid:22332074
[33]  Wu C, Macleod I, Su AI (2013) BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic acids research 41: D561–565. doi: 10.1093/nar/gks1114. pmid:23175613
[34]  Wu C, Orozco C, Boyer J, Leglise M, Goodale J, et al. (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome biology 10: R130. doi: 10.1186/gb-2009-10-11-r130. pmid:19919682
[35]  Edgar AJ (2005) Mice have a transcribed L-threonine aldolase/GLY1 gene, but the human GLY1 gene is a non-processed pseudogene. BMC Genomics 6: 32. pmid:15757516
[36]  Edgar AJ (2002) The human L-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC genetics 3: 18. pmid:12361482
[37]  Ma Y, Wu M, Li D, Li XQ, Li P, et al. (2012) Embryonic developmental toxicity of selenite in zebrafish (Danio rerio) and prevention with folic acid. Food Chem Toxicol 50: 2854–2863. doi: 10.1016/j.fct.2012.04.037. pmid:22583652
[38]  Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature protocols 3: 59–69. doi: 10.1038/nprot.2007.514. pmid:18193022
[39]  Covassin L, Amigo JD, Suzuki K, Teplyuk V, Straubhaar J, et al. (2006) Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish. Developmental biology 299: 551–562. pmid:16999953 doi: 10.1016/j.ydbio.2006.08.020

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413