全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Requirement of Stat3 Signaling in the Postnatal Development of Thymic Medullary Epithelial Cells

DOI: 10.1371/journal.pgen.1005776

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thymic medullary regions are formed in neonatal mice as islet-like structures, which increase in size over time and eventually fuse a few weeks after birth into a continuous structure. The development of medullary thymic epithelial cells (TEC) is dependent on NF-κB associated signaling though other signaling pathways may contribute. Here, we demonstrate that Stat3-mediated signals determine medullary TEC cellularity, architectural organization and hence the size of the medulla. Deleting Stat3 expression selectively in thymic epithelia precludes the postnatal enlargement of the medulla retaining a neonatal architecture of small separate medullary islets. In contrast, loss of Stat3 expression in cortical TEC neither affects the cellularity or organization of the epithelia. Activation of Stat3 is mainly positioned downstream of EGF-R as its ablation in TEC phenocopies the loss of Stat3 expression in these cells. These results indicate that Stat3 meditated signal via EGF-R is required for the postnatal development of thymic medullary regions.

References

[1]  Manley NR, Richie ER, Blackburn CC, Condie BG, Sage J (2011) Structure and function of the thymic microenvironment. Frontiers in bioscience 16: 2461–2477. doi: 10.2741/3866
[2]  Petrie HT, Zú?iga-Pflücker JC (2007) Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 25: 649–679. pmid:17291187 doi: 10.1146/annurev.immunol.23.021704.115715
[3]  Kawamoto H, Ikawa T, Masuda K, Wada H, Katsura Y (2010) A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunological reviews 238: 23–36. doi: 10.1111/j.1600-065X.2010.00959.x. pmid:20969582
[4]  Rothenberg EV, Moore JE, Yui MA (2008) Launching the T-cell-lineage developmental programme. Nature reviews Immunology 8: 9–21. pmid:18097446 doi: 10.1038/nri2232
[5]  Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6: 127–135. pmid:16491137 doi: 10.1038/nri1781
[6]  Daley SR, Hu DY, Goodnow CC (2013) Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-kappaB. The Journal of experimental medicine 210: 269–285. doi: 10.1084/jem.20121458. pmid:23337809
[7]  Stritesky GL, Xing Y, Erickson JR, Kalekar LA, Wang X, et al. (2013) Murine thymic selection quantified using a unique method to capture deleted T cells. Proceedings of the National Academy of Sciences of the United States of America 110: 4679–4684. doi: 10.1073/pnas.1217532110. pmid:23487759
[8]  McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA (2008) Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. Journal of Experimental Medicine 205: 2575–2584. doi: 10.1084/jem.20080866. pmid:18936237
[9]  Melichar HJ, Ross JO, Herzmark P, Hogquist KA, Robey EA (2013) Distinct temporal patterns of T cell receptor signaling during positive versus negative selection in situ. Science signaling 6: ra92. doi: 10.1126/scisignal.2004400. pmid:24129702
[10]  Anderson G, Lane PJ, Jenkinson EJ (2007) Generating intrathymic microenvironments to establish T-cell tolerance. Nature reviews Immunology 7: 954–963. pmid:17992179 doi: 10.1038/nri2187
[11]  Klein L, Hinterberger M, Wirnsberger G, Kyewski B (2009) Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 9: 833–844. doi: 10.1038/nri2669. pmid:19935803
[12]  Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14: 377–391. doi: 10.1038/nri3667. pmid:24830344
[13]  Sansom SN, Shikama N, Zhanybekova S, Nusspaumer G, Macaulay IC, et al. (2014) Population and single cell genomics reveal the Aire-dependency, relief from Polycomb silencing and distribution of self-antigen expression in thymic epithelia. Genome Research. doi: 10.1101/gr.171645.113
[14]  Mathis D, Benoist C (2007) A decade of AIRE. Nature reviews Immunology 7: 645–650. pmid:17641664 doi: 10.1038/nri2136
[15]  Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, et al. (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441: 992–996. pmid:16791198 doi: 10.1038/nature04850
[16]  Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441: 988–991. pmid:16791197 doi: 10.1038/nature04813
[17]  Gordon J, Wilson VA, Blair NF, Sheridan J, Farley A, et al. (2004) Functional evidence for a single endodermal origin for the thymic epithelium. Nature immunology 5: 546–553. pmid:15098031 doi: 10.1038/ni1064
[18]  Klug DB, Carter C, Gimenez-Conti IB, Richie ER (2002) Cutting edge: thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. Journal of immunology 169: 2842–2845. doi: 10.4049/jimmunol.169.6.2842
[19]  Jenkinson WE, Rossi SW, Jenkinson EJ, Anderson G (2005) Development of functional thymic epithelial cells occurs independently of lymphostromal interactions. Mechanisms of Development 122: 1294–1299. pmid:16274965 doi: 10.1016/j.mod.2005.08.003
[20]  Rodewald HR (2008) Thymus organogenesis. Annual Review of Immunology 26: 355–388. doi: 10.1146/annurev.immunol.26.021607.090408. pmid:18304000
[21]  Shakib S, Desanti GE, Jenkinson WE, Parnell SM, Jenkinson EJ, et al. (2009) Checkpoints in the development of thymic cortical epithelial cells. Journal of Immunology 182: 130–137. doi: 10.4049/jimmunol.182.1.130
[22]  van Ewijk W, Holl?nder G, Terhorst C, Wang B (2000) Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 127: 1583–1591. pmid:10725235
[23]  Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Seminars in Immunology 24: 309–320. doi: 10.1016/j.smim.2012.04.005. pmid:22559987
[24]  Nikolich-Zugich J, Li G, Uhrlaub JL, Renkema KR, Smithey MJ (2012) Age-related changes in CD8 T cell homeostasis and immunity to infection. Seminars in Immunology 24: 356–364. doi: 10.1016/j.smim.2012.04.009. pmid:22554418
[25]  Alves NL, Takahama Y, Ohigashi I, Ribeiro AR, Baik S, et al. (2014) Serial progression of cortical and medullary thymic epithelial microenvironments. European journal of immunology 44: 16–22. doi: 10.1002/eji.201344110. pmid:24214487
[26]  Gray DH, Ueno T, Chidgey AP, Malin M, Goldberg GL, et al. (2005) Controlling the thymic microenvironment. Current opinion in immunology 17: 137–143. pmid:15766672 doi: 10.1016/j.coi.2005.02.001
[27]  Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott HS, et al. (2007) Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 8: 304–311. pmid:17277780 doi: 10.1038/ni1438
[28]  Kyewski B, Derbinski J (2004) Self-representation in the thymus: an extended view. Nature reviews Immunology 4: 688–698. pmid:15343368 doi: 10.1038/nri1436
[29]  Yano M, Kuroda N, Han H, Meguro-Horike M, Nishikawa Y, et al. (2008) Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. The Journal of experimental medicine 205: 2827–2838. doi: 10.1084/jem.20080046. pmid:19015306
[30]  Baik S, Jenkinson EJ, Lane PJ, Anderson G, Jenkinson WE (2013) Generation of both cortical and Aire(+) medullary thymic epithelial compartments from CD205(+) progenitors. European journal of immunology 43: 589–594. doi: 10.1002/eji.201243209. pmid:23299414
[31]  Gray D, Abramson J, Benoist C, Mathis D (2007) Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. The Journal of experimental medicine 204: 2521–2528. pmid:17908938 doi: 10.1084/jem.20070795
[32]  Gray DH, Seach N, Ueno T, Milton MK, Liston A, et al. (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108: 3777–3785. pmid:16896157 doi: 10.1182/blood-2006-02-004531
[33]  Ohigashi I, Zuklys S, Sakata M, Mayer CE, Zhanybekova S, et al. (2013) Aire-expressing thymic medullary epithelial cells originate from beta5t-expressing progenitor cells. Proceedings of the National Academy of Sciences of the United States of America 110: 9885–9890. doi: 10.1073/pnas.1301799110. pmid:23720310
[34]  Holl?nder GA, Wang B, Nichogiannopoulou A, Platenburg PP, van Ewijk W, et al. (1995) Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373: 350–353. pmid:7830770 doi: 10.1038/373350a0
[35]  van Ewijk W, Shores EW, Singer A (1994) Crosstalk in the mouse thymus. Immunology today 15: 214–217. pmid:8024681 doi: 10.1016/0167-5699(94)90246-1
[36]  Philpott KL, Viney JL, Kay G, Rastan S, Gardiner EM, et al. (1992) Lymphoid development in mice congenitally lacking T cell receptor alpha beta-expressing cells. Science 256: 1448–1452. pmid:1604321 doi: 10.1126/science.1604321
[37]  Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, et al. (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308: 248–251. pmid:15705807 doi: 10.1126/science.1105677
[38]  Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, et al. (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29: 423–437. doi: 10.1016/j.immuni.2008.06.015. pmid:18799149
[39]  Boehm T, Scheu S, Pfeffer K, Bleul CC (2003) Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. The Journal of experimental medicine 198: 757–769. pmid:12953095 doi: 10.1084/jem.20030794
[40]  Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, et al. (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373: 531–536. pmid:7845467 doi: 10.1038/373531a0
[41]  Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, et al. (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29: 438–450. doi: 10.1016/j.immuni.2008.06.018. pmid:18799150
[42]  Irla M, Hugues S, Gill J, Nitta T, Hikosaka Y, et al. (2008) Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 29: 451–463. doi: 10.1016/j.immuni.2008.08.007. pmid:18799151
[43]  Mouri Y, Yano M, Shinzawa M, Shimo Y, Hirota F, et al. (2011) Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. Journal of immunology 186: 5047–5057. doi: 10.4049/jimmunol.1003533
[44]  Nitta T, Ohigashi I, Nakagawa Y, Takahama Y (2011) Cytokine crosstalk for thymic medulla formation. Current opinion in immunology 23: 190–197. doi: 10.1016/j.coi.2010.12.002. pmid:21194915
[45]  White AJ, Nakamura K, Jenkinson WE, Saini M, Sinclair C, et al. (2010) Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells. Journal of immunology 185: 4769–4776. doi: 10.4049/jimmunol.1002151
[46]  Williams JA, Zhang J, Jeon H, Nitta T, Ohigashi I, et al. (2014) Thymic medullary epithelium and thymocyte self-tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways. Journal of immunology 192: 630–640. doi: 10.4049/jimmunol.1302550
[47]  Sano S, Takahama Y, Sugawara T, Kosaka H, Itami S, et al. (2001) Stat3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocyte survival. Immunity 15: 261–273. pmid:11520461 doi: 10.1016/s1074-7613(01)00180-7
[48]  Ho JN, Kang GY, Lee SS, Kim J, Bae IH, et al. (2010) Bcl-XL and STAT3 mediate malignant actions of gamma-irradiation in lung cancer cells. Cancer Sci 101: 1417–1423. doi: 10.1111/j.1349-7006.2010.01552.x. pmid:20331635
[49]  Zuklys S, Gill J, Keller MP, Hauri-Hohl M, Zhanybekova S, et al. (2009) Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function. Journal of immunology 182: 2997–3007. doi: 10.4049/jimmunol.0713723
[50]  Ucar A, Ucar O, Klug P, Matt S, Brunk F, et al. (2014) Adult Thymus Contains FoxN1(-) Epithelial Stem Cells that Are Bipotent for Medullary and Cortical Thymic Epithelial Lineages. Immunity 41: 257–269. doi: 10.1016/j.immuni.2014.07.005. pmid:25148026
[51]  Corbeaux T, Hess I, Swann JB, Kanzler B, Haas-Assenbaum A, et al. (2010) Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proceedings of the National Academy of Sciences of the United States of America 107: 16613–16618. doi: 10.1073/pnas.1004623107. pmid:20823228
[52]  Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372: 103–107. pmid:7969402 doi: 10.1038/372103a0
[53]  Nowell CS, Bredenkamp N, Tetélin S, Jin X, Tischner C, et al. (2011) Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS genetics 7: e1002348. doi: 10.1371/journal.pgen.1002348. pmid:22072979
[54]  Dumont-Lagacé M, Brochu S, St-Pierre C, Perreault C (2014) Adult thymic epithelium contains nonsenescent label-retaining cells. Journal of immunology 192: 2219–2226. doi: 10.4049/jimmunol.1302961
[55]  Gordon J, Xiao S, Hughes B 3rd, Su DM, Navarre SP, et al. (2007) Specific expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus. BMC Dev Biol 7: 69. pmid:17577402 doi: 10.1186/1471-213x-7-69
[56]  Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, et al. (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316: 1349–1353. pmid:17540904 doi: 10.1126/science.1141915
[57]  Jenkinson EJ, Franchi LL, Kingston R, Owen JJ (1982) Effect of deoxyguanosine on lymphopoiesis in the developing thymus rudiment in vitro: application in the production of chimeric thymus rudiments. European journal of immunology 12: 583–587. pmid:6126365 doi: 10.1002/eji.1830120710
[58]  Tarutani M, Itami S, Okabe M, Ikawa M, Tezuka T, et al. (1997) Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proceedings of the National Academy of Sciences of the United States of America 94: 7400–7405. pmid:9207103 doi: 10.1073/pnas.94.14.7400
[59]  Cowan JE, Parnell SM, Nakamura K, Caamano JH, Lane PJ, et al. (2013) The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. Journal of Experimental Medicine 210: 675–681. doi: 10.1084/jem.20122070. pmid:23530124
[60]  Seki E, Kondo Y, Iimuro Y, Naka T, Son G, et al. (2008) Demonstration of cooperative contribution of MET- and EGFR-mediated STAT3 phosphorylation to liver regeneration by exogenous suppressor of cytokine signalings. Journal of hepatology 48: 237–245. pmid:18068850 doi: 10.1016/j.jhep.2007.08.020
[61]  Darnell JE Jr., Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421. pmid:8197455 doi: 10.1126/science.8197455
[62]  Quesnelle KM, Boehm AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102: 311–319. pmid:17661350 doi: 10.1002/jcb.21475
[63]  Stark GR, Darnell JE Jr. (2012) The JAK-STAT pathway at twenty. Immunity 36: 503–514. doi: 10.1016/j.immuni.2012.03.013. pmid:22520844
[64]  Shen Y, Schlessinger K, Zhu X, Meffre E, Quimby F, et al. (2004) Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation. Mol Cell Biol 24: 407–419. pmid:14673173 doi: 10.1128/mcb.24.1.407-419.2004
[65]  Geenen V (2003) The thymic insulin-like growth factor axis: involvement in physiology and disease. Horm Metab Res 35: 656–663. pmid:14710343 doi: 10.1055/s-2004-814161
[66]  Timsit J, Savino W, Safieh B, Chanson P, Gagnerault MC, et al. (1992) Growth hormone and insulin-like growth factor-I stimulate hormonal function and proliferation of thymic epithelial cells. J Clin Endocrinol Metab 75: 183–188. pmid:1619008 doi: 10.1210/jcem.75.1.1619008
[67]  Kermani H, Goffinet L, Mottet M, Bodart G, Morrhaye G, et al. (2012) Expression of the growth hormone/insulin-like growth factor axis during Balb/c thymus ontogeny and effects of growth hormone upon ex vivo T cell differentiation. Neuroimmunomodulation 19: 137–147. doi: 10.1159/000328844. pmid:22261974
[68]  Sano S, Itami S, Takeda K, Tarutani M, Yamaguchi Y, et al. (1999) Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J 18: 4657–4668. pmid:10469645 doi: 10.1093/emboj/18.17.4657
[69]  van Vliet E, Melis M, van Ewijk W (1986) The influence of dexamethasone treatment on the lymphoid and stromal composition of the mouse thymus: a flowcytometric and immunohistological analysis. Cell Immunol 103: 229–240. pmid:2879639 doi: 10.1016/0008-8749(86)90086-9
[70]  Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, et al. (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10: 39–49. pmid:10023769 doi: 10.1016/s1074-7613(00)80005-9
[71]  Natarajan A, Wagner B, Sibilia M (2007) The EGF receptor is required for efficient liver regeneration. Proceedings of the National Academy of Sciences of the United States of America 104: 17081–17086. pmid:17940036 doi: 10.1073/pnas.0704126104
[72]  Borowiak M, Garratt AN, Wustefeld T, Strehle M, Trautwein C, et al. (2004) Met provides essential signals for liver regeneration. Proceedings of the National Academy of Sciences of the United States of America 101: 10608–10613. pmid:15249655 doi: 10.1073/pnas.0403412101
[73]  Van Vliet E, Melis M, Van Ewijk W (1984) Monoclonal antibodies to stromal cell types of the mouse thymus. European Journal of Immunology 14: 524–529. pmid:6734714 doi: 10.1002/eji.1830140608
[74]  Sempowski GD, Rhein ME (2004) Measurement of mouse T cell receptor excision circles. Curr Protoc Immunol Chapter 10: Unit 10 31. doi: 10.1002/0471142735.im1031s63
[75]  Kawamoto H, Ikawa T, Ohmura K, Fujimoto S, Katsura Y (2000) T cell progenitors emerge earlier than B cell progenitors in the murine fetal liver. Immunity 12: 441–450. pmid:10795742 doi: 10.1016/s1074-7613(00)80196-x
[76]  Seach N, Wong K, Hammett M, Boyd RL, Chidgey AP (2012) Purified enzymes improve isolation and characterization of the adult thymic epithelium. Journal of Immunological Methods 385: 23–34. doi: 10.1016/j.jim.2012.07.023. pmid:22910002

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133