全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Stat3 Signaling Promotes Survival And Maintenance Of Medullary Thymic Epithelial Cells

DOI: 10.1371/journal.pgen.1005777

Full-Text   Cite this paper   Add to My Lib

Abstract:

Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis.

References

[1]  Anderson G, Lane PJ, Jenkinson EJ. Generating intrathymic microenvironments to establish T-cell tolerance. Nat Rev Immunol. 2007;7(12):954–63. pmid:17992179 doi: 10.1038/nri2187
[2]  Manley NR, Richie ER, Blackburn CC, Condie BG, Sage J. Structure and function of the thymic microenvironment. Front Biosci. 2011;17:2461–77. Epub 2011/05/31. doi: 10.2741/3866
[3]  Nitta T, Ohigashi I, Nakagawa Y, Takahama Y. Cytokine crosstalk for thymic medulla formation. Curr Opin Immunol. 2011;23(2):190–7. Epub 2011/01/05. doi: 10.1016/j.coi.2010.12.002. pmid:21194915
[4]  Petrie HT, Zuniga-Pflucker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol. 2007;25:649–79. pmid:17291187 doi: 10.1146/annurev.immunol.23.021704.115715
[5]  Hozumi K, Mailhos C, Negishi N, Hirano K, Yahata T, Ando K, et al. Delta-like 4 is indispensable in thymic environment specific for T cell development. J Exp Med. 2008;205(11):2507–13. Epub 2008/10/01. doi: 10.1084/jem.20080134. pmid:18824583
[6]  Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, Pierres M, et al. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med. 2008;205(11):2515–23. Epub 2008/10/01. doi: 10.1084/jem.20080829. pmid:18824585
[7]  Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. 2009;9(12):833–44. Epub 2009/11/26. doi: 10.1038/nri2669. pmid:19935803
[8]  Takahama Y, Nitta T, Mat Ripen A, Nitta S, Murata S, Tanaka K. Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin Immunol. 2010;22(5):287–93. Epub 2010/06/01. doi: 10.1016/j.smim.2010.04.012. pmid:20510627
[9]  Gommeaux J, Gregoire C, Nguessan P, Richelme M, Malissen M, Guerder S, et al. Thymus-specific serine protease regulates positive selection of a subset of CD4+ thymocytes. Eur J Immunol. 2009;39(4):956–64. Epub 2009/03/14. doi: 10.1002/eji.200839175. pmid:19283781
[10]  Ehrlich LI, Oh DY, Weissman IL, Lewis RS. Differential contribution of chemotaxis and substrate restriction to segregation of immature and mature thymocytes. Immunity. 2009;31(6):986–98. Epub 2009/12/08. doi: 10.1016/j.immuni.2009.09.020. pmid:19962328
[11]  Kurobe H, Liu C, Ueno T, Saito F, Ohigashi I, Seach N, et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity. 2006;24(2):165–77. pmid:16473829 doi: 10.1016/j.immuni.2005.12.011
[12]  Kwan J, Killeen N. CCR7 directs the migration of thymocytes into the thymic medulla. J Immunol. 2004;172(7):3999–4007. Epub 2004/03/23. pmid:15034011 doi: 10.4049/jimmunol.172.7.3999
[13]  McCaughtry TM, Wilken MS, Hogquist KA. Thymic emigration revisited. J Exp Med. 2007;204(11):2513–20. Epub 2007/10/03. pmid:17908937 doi: 10.1084/jem.20070601
[14]  Scollay R, Godfrey DI. Thymic emigration: conveyor belts or lucky dips? Immunol Today. 1995;16(6):268–73; discussion 73–4. Epub 1995/06/01. pmid:7662096 doi: 10.1016/0167-5699(95)80179-0
[15]  Park JH, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nature immunology. 2010;11(3):257–64. Epub 2010/02/02. doi: 10.1038/ni.1840. pmid:20118929
[16]  Mathis D, Benoist C. Aire. Annu Rev Immunol. 2009;27:287–312. Epub 2009/03/24. doi: 10.1146/annurev.immunol.25.022106.141532. pmid:19302042
[17]  Metzger TC, Anderson MS. Control of central and peripheral tolerance by Aire. Immunological reviews. 2011;241(1):89–103. Epub 2011/04/15. doi: 10.1111/j.1600-065X.2011.01008.x. pmid:21488892
[18]  Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol. 2006;24:571–606. pmid:16551260 doi: 10.1146/annurev.immunol.23.021704.115601
[19]  Gallegos AM, Bevan MJ. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med. 2004;200(8):1039–49. pmid:15492126 doi: 10.1084/jem.20041457
[20]  Hinterberger M, Aichinger M, da Costa OP, Voehringer D, Hoffmann R, Klein L. Autonomous role of medullary thymic epithelial cells in central CD4(+) T cell tolerance. Nat Immunol. 2010;11(6):512–9. Epub 2010/05/01. doi: 10.1038/ni.1874. pmid:20431619
[21]  Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol. 2003;4(4):350–4. pmid:12612579 doi: 10.1038/ni906
[22]  Hubert FX, Kinkel SA, Davey GM, Phipson B, Mueller SN, Liston A, et al. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood. 2011;118(9):2462–72. Epub 2011/04/21. doi: 10.1182/blood-2010-06-286393. pmid:21505196
[23]  Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5(10):772–82. pmid:16200080 doi: 10.1038/nri1707
[24]  Aschenbrenner K, D'Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol. 2007;8(4):351–8. pmid:17322887 doi: 10.1038/ni1444
[25]  Cowan JE, Parnell SM, Nakamura K, Caamano JH, Lane PJ, Jenkinson EJ, et al. The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. The Journal of experimental medicine. 2013;210(4):675–81. Epub 2013/03/27. doi: 10.1084/jem.20122070. pmid:23530124
[26]  Boehm T, Scheu S, Pfeffer K, Bleul CC. Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med. 2003;198(5):757–69. pmid:12953095 doi: 10.1084/jem.20030794
[27]  Lomada D, Liu B, Coghlan L, Hu Y, Richie ER. Thymus Medulla Formation and Central Tolerance Are Restored in IKK{alpha}-/- Mice That Express an IKK{alpha} Transgene in Keratin 5+ Thymic Epithelial Cells. J Immunol. 2007;178(2):829–37. pmid:17202344 doi: 10.4049/jimmunol.178.2.829
[28]  Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity. 2008;29(3):423–37. doi: 10.1016/j.immuni.2008.06.015. pmid:18799149
[29]  Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D, et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature. 1995;373(6514):531–6. pmid:7845467 doi: 10.1038/373531a0
[30]  van Ewijk W, Shores EW, Singer A. Crosstalk in the mouse thymus. Immunol Today. 1994;15:214–7. pmid:8024681 doi: 10.1016/0167-5699(94)90246-1
[31]  Roberts NA, White AJ, Jenkinson WE, Turchinovich G, Nakamura K, Withers DR, et al. Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity. 2012;36(3):427–37. Epub 2012/03/20. doi: 10.1016/j.immuni.2012.01.016. pmid:22425250
[32]  Rossi SW, Kim MY, Leibbrandt A, Parnell SM, Jenkinson WE, Glanville SH, et al. RANK signals from CD4(+)3(-) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med. 2007;204(6):1267–72. pmid:17502664 doi: 10.1084/jem.20062497
[33]  Shores EW, Van Ewijk W, Singer A. Disorganization and restoration of thymic medullary epithelial cells in T cell receptor-negative scid mice: evidence that receptor-bearing lymphocytes influence maturation of the thymic microenvironment. Eur J Immunol. 1991;21(7):1657–61. Epub 1991/07/01. pmid:2060577 doi: 10.1002/eji.1830210711
[34]  Surh CD, Ernst B, Sprent J. Growth of epithelial cells in the thymic medulla is under the control of mature T cells. J Exp Med. 1992;176:611–6. pmid:1500862 doi: 10.1084/jem.176.2.611
[35]  Nasreen M, Ueno T, Saito F, Takahama Y. In vivo treatment of class II MHC-deficient mice with anti-TCR antibody restores the generation of circulating CD4 T cells and optimal architecture of thymic medulla. J Immunol. 2003;171(7):3394–400. pmid:14500633 doi: 10.4049/jimmunol.171.7.3394
[36]  Palmer DB, Viney JL, Ritter MA, Hayday AC, Owen MJ. Expression of the ab T-cell receptor is necessary for the generation of the thymic medulla. Develop Immunol. 1993;3:175–9. doi: 10.1155/1993/56290
[37]  Seach N, Ueno T, Fletcher AL, Lowen T, Mattesich M, Engwerda CR, et al. The lymphotoxin pathway regulates Aire-independent expression of ectopic genes and chemokines in thymic stromal cells. J Immunol. 2008;180(8):5384–92. pmid:18390720 doi: 10.4049/jimmunol.180.8.5384
[38]  Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity. 2008;29(3):438–50. doi: 10.1016/j.immuni.2008.06.018. pmid:18799150
[39]  Irla M, Hugues S, Gill J, Nitta T, Hikosaka Y, Williams IR, et al. Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity. 2008;29(3):451–63. doi: 10.1016/j.immuni.2008.08.007. pmid:18799151
[40]  Mouri Y, Yano M, Shinzawa M, Shimo Y, Hirota F, Nishikawa Y, et al. Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. J Immunol. 186(9):5047–57. Epub 2011/03/29. doi: 10.4049/jimmunol.1003533. pmid:21441458
[41]  Williams JA, Zhang J, Jeon H, Nitta T, Ohigashi I, Klug D, et al. Thymic medullary epithelium and thymocyte self-tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways. Journal of immunology. 2014;192(2):630–40. Epub 2013/12/18. doi: 10.4049/jimmunol.1302550
[42]  Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science. 2005;308(5719):248–51. pmid:15705807 doi: 10.1126/science.1105677
[43]  Kajiura F, Sun S, Nomura T, Izumi K, Ueno T, Bando Y, et al. NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol. 2004;172(4):2067–75. pmid:14764671 doi: 10.4049/jimmunol.172.4.2067
[44]  Naspetti M, Aurrand-Lions M, DeKoning J, Malissen M, Galland F, Lo D, et al. Thymocytes and RelB-dependent medullary epithelial cells provide growth-promoting and organization signals, respectively, to thymic medullary stromal cells. Eur J Immunol. 1997;27(6):1392–7. Epub 1997/06/01. pmid:9209490 doi: 10.1002/eji.1830270615
[45]  Jenkinson SR, Williams JA, Jeon H, Zhang J, Nitta T, Ohigashi I, et al. TRAF3 enforces the requirement for T cell cross-talk in thymic medullary epithelial development. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(52):21107–12. Epub 2013/12/11. doi: 10.1073/pnas.1314859111. pmid:24324158
[46]  Darnell JE Jr. STATs and gene regulation. Science. 1997;277(5332):1630–5. pmid:9287210 doi: 10.1126/science.277.5332.1630
[47]  Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000;19(21):2548–56. pmid:10851053 doi: 10.1038/sj.onc.1203551
[48]  Klug DB, Carter C, Crouch E, Roop D, Conti CJ, Richie ER. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci U S A. 1998;95:11822–7. pmid:9751749 doi: 10.1073/pnas.95.20.11822
[49]  Dooley J, Erickson M, Larochelle WJ, Gillard GO, Farr AG. FGFR2IIIb signaling regulates thymic epithelial differentiation. Dev Dyn. 2007;236(12):3459–71. Epub 2007/10/31. pmid:17969154 doi: 10.1002/dvdy.21364
[50]  Sano S, Chan KS, Carbajal S, Clifford J, Peavey M, Kiguchi K, et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med. 2005;11(1):43–9. pmid:15592573 doi: 10.1038/nm1162
[51]  Shores EW, Van Ewijk W, Singer A. Maturation of medullary thymic epithelium requires thymocytes expressing fully assembled CD3-TCR complexes. Intl Immunol. 1994;6:1393–402. doi: 10.1093/intimm/6.9.1393
[52]  Anderson M, Anderson SK, Farr AG. Thymic vasculature: organizer of the medullary epithelial compartment? Int Immunol. 2000;12(7):1105–10. pmid:10882422 doi: 10.1093/intimm/12.7.1105
[53]  Farr AG, Anderson SK. Epithelial heterogeneity in the murine thymus: Fucose-specific lectins bind medullary epithelial cells. J Immunol. 1985;134:2971–7. pmid:3856612
[54]  Rouse RV, Bolin LM, Bender JR, Kyewski BA. Monoclonal antibodies reactive with subsets of mouse and human thymic epithelial cells. J Histochem Cytochem. 1988;36(12):1511–7. pmid:2461413 doi: 10.1177/36.12.2461413
[55]  Anderson G, Takahama Y. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 2012;33(6):256–63. Epub 2012/05/18. doi: 10.1016/j.it.2012.03.005. pmid:22591984
[56]  Jenkinson WE, Rossi SW, Parnell SM, Jenkinson EJ, Anderson G. PDGFRalpha-expressing mesenchyme regulates thymus growth and the availability of intrathymic niches. Blood. 2007;109(3):954–60. pmid:17008543 doi: 10.1182/blood-2006-05-023143
[57]  Prockop SE, Petrie HT. Regulation of thymus size by competition for stromal niches among early T cell progenitors. J Immunol. 2004;173(3):1604–11. pmid:15265888 doi: 10.4049/jimmunol.173.3.1604
[58]  Gabler J, Arnold J, Kyewski B. Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells. Eur J Immunol. 2007;37(12):3363–72. Epub 2007/11/15. pmid:18000951 doi: 10.1002/eji.200737131
[59]  Gray D, Abramson J, Benoist C, Mathis D. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med. 2007;204(11):2521–8. pmid:17908938 doi: 10.1084/jem.20070795
[60]  Nishikawa Y, Hirota F, Yano M, Kitajima H, Miyazaki J, Kawamoto H, et al. Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J Exp Med. 2010;207(5):963–71. Epub 2010/04/21. doi: 10.1084/jem.20092144. pmid:20404099
[61]  White AJ, Nakamura K, Jenkinson WE, Saini M, Sinclair C, Seddon B, et al. Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells. J Immunol. 2010;185(8):4769–76. Epub 2010/09/24. doi: 10.4049/jimmunol.1002151. pmid:20861360
[62]  Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Jeker LT, et al. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med. 2011;208(2):383–94. Epub 2011/02/09. doi: 10.1084/jem.20102327. pmid:21300913
[63]  Levy DE, Darnell JE, Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62. pmid:12209125 doi: 10.1038/nrm909
[64]  Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, et al. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood. 2006;108(12):3777–85. pmid:16896157 doi: 10.1182/blood-2006-02-004531
[65]  Bhattacharya S, Ray RM, Johnson LR. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J. 2005;392(Pt 2):335–44. pmid:16048438 doi: 10.1042/bj20050465
[66]  Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32(5):605–15. doi: 10.1016/j.immuni.2010.05.003. pmid:20493732
[67]  Sano S, Takahama Y, Sugawara T, Kosaka H, Itami S, Yoshikawa K, et al. Stat3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocyte survival. Immunity. 2001;15(2):261–73. pmid:11520461 doi: 10.1016/s1074-7613(01)00180-7
[68]  Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science. 2008;322(5902):756–60. Epub 2008/11/01. doi: 10.1126/science.1163493. pmid:18974357
[69]  Weih F, Carrasco D, Durham SK, Barton DS, Rizzo CA, Ryseck RP, et al. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell. 1995;80(2):331–40. pmid:7834753 doi: 10.1016/0092-8674(95)90416-6
[70]  Zuklys S, Balciunaite G, Agarwal A, Fasler-Kan E, Palmer E, Hollander GA. Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J Immunol. 2000;165(4):1976–83. Epub 2000/08/05. pmid:10925280 doi: 10.4049/jimmunol.165.4.1976
[71]  White AJ, Withers DR, Parnell SM, Scott HS, Finke D, Lane PJ, et al. Sequential phases in the development of Aire-expressing medullary thymic epithelial cells involve distinct cellular input. Eur J Immunol. 2008;38(4):942–7. doi: 10.1002/eji.200738052. pmid:18350550
[72]  Desanti GE, Cowan JE, Baik S, Parnell SM, White AJ, Penninger JM, et al. Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla. Journal of immunology. 2012;189(12):5519–26. Epub 2012/11/16. doi: 10.4049/jimmunol.1201815
[73]  Ahmed-Choudhury J, Williams KT, Young LS, Adams DH, Afford SC. CD40 mediated human cholangiocyte apoptosis requires JAK2 dependent activation of STAT3 in addition to activation of JNK1/2 and ERK1/2. Cell Signal. 2006;18(4):456–68. Epub 2005/06/23. pmid:15970430 doi: 10.1016/j.cellsig.2005.05.015
[74]  Hanissian SH, Geha RS. Jak3 is associated with CD40 and is critical for CD40 induction of gene expression in B cells. Immunity. 1997;6(4):379–87. Epub 1997/04/01. pmid:9133417 doi: 10.1016/s1074-7613(00)80281-2
[75]  Hauri-Hohl M, Zuklys S, Hollander GA, Ziegler SF. A regulatory role for TGF-beta signaling in the establishment and function of the thymic medulla. Nature immunology. 2014;15(6):554–61. Epub 2014/04/15. doi: 10.1038/ni.2869. pmid:24728352
[76]  Sano S, Itami S, Takeda K, Tarutani M, Yamaguchi Y, Miura H, et al. Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. Embo J. 1999;18(17):4657–68. pmid:10469645 doi: 10.1093/emboj/18.17.4657
[77]  Chan KS, Carbajal S, Kiguchi K, Clifford J, Sano S, DiGiovanni J. Epidermal growth factor receptor-mediated activation of Stat3 during multistage skin carcinogenesis. Cancer Res. 2004;64(7):2382–9. pmid:15059889 doi: 10.1158/0008-5472.can-03-3197
[78]  Gray DH, Chidgey AP, Boyd RL. Analysis of thymic stromal cell populations using flow cytometry. J Immunol Methods. 2002;260(1–2):15–28. pmid:11792372 doi: 10.1016/s0022-1759(01)00493-8

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413