全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis

DOI: 10.1371/journal.pgen.1005774

Full-Text   Cite this paper   Add to My Lib

Abstract:

The rate at which genomes adapt to environmental changes and the prevalence of adaptive processes in molecular evolution are two controversial issues in current evolutionary genetics. Previous attempts to quantify the genome-wide rate of adaptation through amino-acid substitution have revealed a surprising diversity of patterns, with some species (e.g. Drosophila) experiencing a very high adaptive rate, while other (e.g. humans) are dominated by nearly-neutral processes. It has been suggested that this discrepancy reflects between-species differences in effective population size. Published studies, however, were mainly focused on model organisms, and relied on disparate data sets and methodologies, so that an overview of the prevalence of adaptive protein evolution in nature is currently lacking. Here we extend existing estimators of the amino-acid adaptive rate by explicitly modelling the effect of favourable mutations on non-synonymous polymorphism patterns, and we apply these methods to a newly-built, homogeneous data set of 44 non-model animal species pairs. Data analysis uncovers a major contribution of adaptive evolution to the amino-acid substitution process across all major metazoan phyla—with the notable exception of humans and primates. The proportion of adaptive amino-acid substitution is found to be positively correlated to species effective population size. This relationship, however, appears to be primarily driven by a decreased rate of nearly-neutral amino-acid substitution because of more efficient purifying selection in large populations. Our results reveal that adaptive processes dominate the evolution of proteins in most animal species, but do not corroborate the hypothesis that adaptive substitutions accumulate at a faster rate in large populations. Implications regarding the factors influencing the rate of adaptive evolution and positive selection detection in humans vs. other organisms are discussed.

References

[1]  Zhang J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat Genet. 2006 Jul;38(7):819–23. pmid:16767103 doi: 10.1038/ng1812
[2]  Labbé P, Berticat C, Berthomieu A, Unal S, Bernard C, Weill M, et al. Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens. PLoS Genet. 2007 Nov;3(11):e205. pmid:18020711 doi: 10.1371/journal.pgen.0030205
[3]  Liu Y, Cotton JA, Shen B, Han X, Rossiter SJ, Zhang S. Convergent sequence evolution between echolocating bats and dolphins. Curr Biol. 2010 Jan 26;20(2):R53–4. doi: 10.1016/j.cub.2009.11.058. pmid:20129036
[4]  Huerta-Sánchez E, Jin X, Asan , Bianba Z, Peter BM, Vinckenbosch N, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 2014 Aug 14;512(7513):194–7. doi: 10.1038/nature13408. pmid:25043035
[5]  Kimura M. The neutral theory of molecular evolution. Cambridge University Press; 1983.
[6]  Gillespie J.H. The causes of molecular evolution. Oxford University Press; 1991.
[7]  Maynard Smith J. What determines the rate of evolution. Am Nat. 1976; 110:331–8. doi: 10.1086/283071
[8]  McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–4. pmid:1904993 doi: 10.1038/351652a0
[9]  Rand DM, Kann LM. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol. 1996 Jul;13(6):735–48. pmid:8754210 doi: 10.1093/oxfordjournals.molbev.a025634
[10]  Fay JC, Wyckoff GJ, Wu CI. Positive and negative selection on the human genome. Genetics. 2001 Jul;158(3):1227–34. pmid:11454770
[11]  Smith NGC, Eyre-Walker A. Adaptive protein evolution in Drosophila. Nature. 2002 Feb 28;415(6875):1022–4. pmid:11875568 doi: 10.1038/4151022a
[12]  Bierne N, Eyre-Walker A. The genomic rate of adaptive amino acid substitution in Drosophila. Mol Biol Evol. 2004 Jul;21(7):1350–60. pmid:15044594 doi: 10.1093/molbev/msh134
[13]  Welch JJ. Estimating the genomewide rate of adaptive protein evolution in Drosophila. Genetics. 2006 Jun;173(2):821–37. pmid:16582427 doi: 10.1534/genetics.106.056911
[14]  Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet. 2008 May 30;4(5):e1000083. doi: 10.1371/journal.pgen.1000083. pmid:18516229
[15]  Eyre-Walker A, Keightley PD. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol Biol Evol. 2009 Sep;26(9):2097–108. doi: 10.1093/molbev/msp119. pmid:19535738
[16]  Charlesworth J, Eyre-Walker A. The McDonald-Kreitman test and slightly deleterious mutations. Mol Biol Evol. 2008 Jun;25(6):1007–15. doi: 10.1093/molbev/msn005. pmid:18195052
[17]  Eyre-Walker A. Changing effective population size and the McDonald-Kreitman test. Genetics. 2002 Dec;162(4):2017–24. pmid:12524367
[18]  Loewe L, Charlesworth B, Bartolomé C, N?el V. Estimating selection on nonsynonymous mutations. Genetics. 2006 Feb;172(2):1079–92. pmid:16299397 doi: 10.1534/genetics.105.047217
[19]  Eyre-Walker A, Woolfit M, Phelps T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics. 2006 Jun;173(2):891–900. pmid:16547091 doi: 10.1534/genetics.106.057570
[20]  Hvilsom C, Qian Y, Bataillon T, Li Y, Mailund T, Sallé B, et al. Extensive X-linked adaptive evolution in central chimpanzees. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2054–9. doi: 10.1073/pnas.1106877109. pmid:22308321
[21]  Loire E, Chiari Y, Bernard A, Cahais V, Romiguier J, Nabholz B, et al. Population genomics of the endangered giant Galápagos tortoise. Genome Biol. 2013 Dec 16;14(12):R136. doi: 10.1186/gb-2013-14-12-r136. pmid:24342523
[22]  Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic and wild yeasts. Nature. 2009 Mar 19;458(7236):337–41. doi: 10.1038/nature07743. pmid:19212322
[23]  Gossmann TI, Song B-H, Windsor AJ, Mitchell-Olds T, Dixon CJ, Kapralov MV, et al. Genome wide analyses reveal little evidence for adaptive evolution in many plant species. Mol Biol Evol. 2010 Aug;27(8):1822–32. doi: 10.1093/molbev/msq079. pmid:20299543
[24]  Halligan DL, Oliver F, Eyre-Walker A, Harr B, Keightley PD. Evidence for pervasive adaptive protein evolution in wild mice. PLoS Genet. 2010 Jan 22;6(1):e1000825. doi: 10.1371/journal.pgen.1000825. pmid:20107605
[25]  Carneiro M, Albert FW, Melo-Ferreira J, Galtier N, Gayral P, Blanco-Aguiar JA, et al. Evidence for widespread positive and purifying selection across the european rabbit (Oryctolagus cuniculus) genome. Mol Biol Evol 29:1837–1849. doi: 10.1093/molbev/mss025. pmid:22319161
[26]  Tsagkogeorga G, Cahais V, Galtier N. The population genomics of a fast evolver: high levels of diversity, functional constraint and molecular adaptation in the tunicate Ciona intestinalis. Genome Biol Evol. 2012;4(8):740–9. doi: 10.1093/gbe/evs054. pmid:22745226
[27]  Charlesworth J, Eyre-Walker A. The rate of adaptive evolution in enteric bacteria. Mol Biol Evol. 2006 Jul;23(7):1348–56. pmid:16621913 doi: 10.1093/molbev/msk025
[28]  Eyre-Walker A. The genomic rate of adaptive evolution. Trends Ecol Evol. 2006 Oct;21(10):569–75. pmid:16820244
[29]  Strasburg JL, Kane NC, Raduski AR, Bonin A, Michelmore R, Rieseberg LH. Effective population size is positively correlated with levels of adaptive divergence among annual sunflowers. Mol Biol Evol. 2011 May;28(5):1569–80. doi: 10.1093/molbev/msq270. pmid:20952500
[30]  Phifer-Rixey M, Bonhomme F, Boursot P, Churchill GA, Piálek J, Tucker PK et al. Adaptive evolution and effective population size in wild house mice. Mol Biol Evol. 2012 Oct;29(10):2949–55. pmid:22490822 doi: 10.1093/molbev/mss105
[31]  Gossmann TI, Keightley PD, Eyre-Walker A. The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol Evol. 2012;4(5):658–67. doi: 10.1093/gbe/evs027. pmid:22436998
[32]  Jensen JD, Bachtrog D. Characterizing the influence of effective population size on the rate of adaptation: Gillespie's Darwin domain. Genome Biol Evol. 2011;3:687–701. doi: 10.1093/gbe/evr063. pmid:21705473
[33]  Razeto-Barry P, Díaz J, Vásquez RA. The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity. Genetics. 2012 Jun;191(2):523–34. doi: 10.1534/genetics.112.138628. pmid:22426879
[34]  Louren?o JM, Glémin S, Galtier N. The rate of molecular adaptation in a changing environment. Mol Biol Evol. 2013 Jun;30(6):1292–301. doi: 10.1093/molbev/mst026. pmid:23412912
[35]  Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature. 2014 Nov 13;515(7526):261–3. doi: 10.1038/nature13685. pmid:25141177
[36]  Keightley PD, Eyre-Walker A. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics. 2007 Dec;177(4):2251–61. pmid:18073430 doi: 10.1534/genetics.107.080663
[37]  Messer PW, Petrov DA. Frequent adaptation and the McDonald-Kreitman test. Proc Natl Acad Sci U S A. 2013 May 21;110(21):8615–20. doi: 10.1073/pnas.1220835110. pmid:23650353
[38]  Perry GH, Melsted P, Marioni JC, Wang Y, Bainer R, Pickrell JK, et al. Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Res. 2012 Apr;22(4):602–10. doi: 10.1101/gr.130468.111. pmid:22207615
[39]  Martin G, Lenormand T. A general multivariate extension of Fisher's geometrical model and the distribution of mutation fitness effects across species. Evolution. 2006 May;60(5):893–907. pmid:16817531 doi: 10.1554/05-412.1
[40]  Louren?o J, Galtier N, Glémin S. Complexity, pleiotropy, and the fitness effect of mutations. Evolution. 2011 Jun;65(6):1559–71. doi: 10.1111/j.1558-5646.2011.01237.x. pmid:21644948
[41]  Duret L, Galtier N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet. 2009;10:285–311. doi: 10.1146/annurev-genom-082908-150001. pmid:19630562
[42]  Pessia E, Popa A, Mousset S, Rezvoy C, Duret L, Marais GA. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol Evol. 2012;4(7):675–82. doi: 10.1093/gbe/evs052. pmid:22628461
[43]  Ratnakumar A, Mousset S, Glémin S, Berglund J, Galtier N, Duret L, et al. Detecting positive selection within genomes: the problem of biased gene conversion. Philos Trans R Soc Lond B Biol Sci. 2010 Aug 27;365(1552):2571–80. doi: 10.1098/rstb.2010.0007. pmid:20643747
[44]  Drummond DA, Wilke CO. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell. 2008 Jul 25;134(2):341–52. doi: 10.1016/j.cell.2008.05.042. pmid:18662548
[45]  Welch JJ, Eyre-Walker A, Waxman D. Divergence and polymorphism under the nearly neutral theory of molecular evolution. J Mol Evol. 2008 Oct;67(4):418–26. doi: 10.1007/s00239-008-9146-9. pmid:18818860
[46]  Betancourt AJ, Blanco-Martin B, Charlesworth B. The relation between the neutrality index for mitochondrial genes and the distribution of mutational effects on fitness. Evolution. 2012 Aug;66(8):2427–38. doi: 10.1111/j.1558-5646.2012.01628.x. pmid:22834742
[47]  Corbett-Detig RB, Hartl DL, Sackton TB. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 2015 Apr 10;13(4):e1002112. doi: 10.1371/journal.pbio.1002112. pmid:25859758
[48]  Schneider A, Charlesworth B, Eyre-Walker A, Keightley PD. A method for inferring the rate of occurrence and fitness effects of advantageous mutations. Genetics. 2011 Dec;189(4):1427–37. doi: 10.1534/genetics.111.131730. pmid:21954160
[49]  Enard D, Messer PW, Petrov DA. Genome-wide signals of positive selection in human evolution. Genome Res. 2014 Jun;24(6):885–95. doi: 10.1101/gr.164822.113. pmid:24619126
[50]  Daub JT, Hofer T, Cutivet E, Dupanloup I, Quintana-Murci L, Robinson-Rechavi M, et al. Evidence for polygenic adaptation to pathogens in the human genome. Mol Biol Evol. 2013 Jul;30(7):1544–58. doi: 10.1093/molbev/mst080. pmid:23625889
[51]  Bank C, Ewing GB, Ferrer-Admettla A, Foll M, Jensen JD. Thinking too positive? Revisiting current methods of population genetic selection inference. Trends Genet. 2014 Dec;30(12):540–6. doi: 10.1016/j.tig.2014.09.010. pmid:25438719
[52]  Ohta T. Very slightly deleterious mutations and the molecular clock. J Mol Evol. 1987;26(1–2):1–6. doi: 10.1007/bf02111276
[53]  Akashi H, Osada N, Ohta T. Weak selection and protein evolution. Genetics. 2012 Sep;192(1):15–31. doi: 10.1534/genetics.112.140178. pmid:22964835
[54]  Lesecque Y, Keightley PD, Eyre-Walker A. A resolution of the mutation load paradox in humans. Genetics. 2012 Aug;191(4):1321–30. doi: 10.1534/genetics.112.140343. pmid:22661324
[55]  Cherry JL. Should we expect substitution rate to depend on population size? Genetics. 1998 Oct;150(2):911–9. pmid:9755219
[56]  Gillespie JH. The role of population size in molecular evolution. Theor Popul Biol. 1999 Apr;55(2):145–56. pmid:10329514 doi: 10.1006/tpbi.1998.1391
[57]  Orr HA. Adaptation and the cost of complexity. Evolution. 2000 Feb;54(1):13–20. pmid:10937178 doi: 10.1111/j.0014-3820.2000.tb00002.x
[58]  Charlesworth B, Jain K. Purifying selection, drift, and reversible mutation with arbitrarily high mutation rates. Genetics. 2014 Dec;198(4):1587–602. doi: 10.1534/genetics.114.167973. pmid:25230951
[59]  Obbard DJ, Welch JJ, Kim KW, Jiggins FM. Quantifying adaptive evolution in the Drosophila immune system. PLoS Genet. 2009 Oct;5(10):e1000698. doi: 10.1371/journal.pgen.1000698. pmid:19851448
[60]  Fay JC. Weighing the evidence for adaptation at the molecular level. Trends Genet. 2011 Sep;27(9):343–9. doi: 10.1016/j.tig.2011.06.003. pmid:21775012
[61]  Lanfear R, Kokko H, Eyre-Walker A. Population size and the rate of evolution. Trends Ecol Evol. 2014 Jan;29(1):33–41. doi: 10.1016/j.tree.2013.09.009. pmid:24148292
[62]  Gayral P, Melo-Ferreira J, Glémin S, Bierne N, Carneiro M, Nabholz B, et al. Reference-free population genomics from next-generation transcriptome data and the vertebrate-invertebrate gap. PLoS Genet. 2013 Apr;9(4):e1003457. doi: 10.1371/journal.pgen.1003457. pmid:23593039
[63]  Figuet E, Ballenghien M, Romiguier J, Galtier N. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates. Genome Biol Evol. 2014 Dec 19;7(1)240–250. doi: 10.1093/gbe/evu277. pmid:25527834
[64]  Gayral P, Weinert L, Chiari Y, Tsagkogeorga G, Ballenghien M, et al. Next-generation sequencing of transcriptomes: a guide to RNA isolation in nonmodel animals. Mol Ecol Resour. 2011 Jul;11(4):650–61. doi: 10.1111/j.1755-0998.2011.03010.x. pmid:21481219
[65]  Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, et al. Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol Ecol Resour. 2012 Sep;12(5):834–45. doi: 10.1111/j.1755-0998.2012.03148.x. pmid:22540679
[66]  Ranwez V, Harispe S, Delsuc F, Douzery EJ. MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. PLoS One. 2011;6(9):e22594. doi: 10.1371/journal.pone.0022594. pmid:21949676
[67]  Hernandez RD, Williamson SH, Zhu L, Bustamante CD. Context-dependent mutation rates may cause spurious signatures of a fixation bias favoring higher GC-content in humans. Mol Biol Evol. 2007 Oct;24(10):2196–202. pmid:17656634 doi: 10.1093/molbev/msm149
[68]  Guéguen L, Gaillard S, Boussau B, Gouy M, Groussin M, Rochette NC, et al. Bio++: efficient extensible libraries and tools for computational molecular evolution. Mol Biol Evol. 2013 Aug;30(8):1745–50. doi: 10.1093/molbev/mst097. pmid:23699471

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413