全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes

DOI: 10.1371/journal.pgen.1005796

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches.

References

[1]  Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, et al. (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genetics 5: e1000344. doi: 10.1371/journal.pgen.1000344. pmid:19165319
[2]  Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304. pmid:10830951 doi: 10.1038/35012500
[3]  Dorman CJ (2007) H-NS, the genome sentinel. Nature Reviews Microbiology 5: 157–161. pmid:17191074 doi: 10.1038/nrmicro1598
[4]  Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiology Reviews 35: 957–976. doi: 10.1111/j.1574-6976.2011.00292.x. pmid:21711367
[5]  Navarre WW, McClelland M, Libby SJ, Fang FC (2007) Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes & Development 21: 1456–1471. doi: 10.1101/gad.1543107
[6]  Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, et al. (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313: 236–238. pmid:16763111 doi: 10.1126/science.1128794
[7]  Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, et al. (2006) H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2: e81. pmid:16933988 doi: 10.1371/journal.ppat.0020081
[8]  Fang FC, Rimsky S (2008) New insights into transcriptional regulation by H-NS. Curr Opin Microbiol 11: 113–120. doi: 10.1016/j.mib.2008.02.011. pmid:18387844
[9]  Ali SS, Soo J, Rao C, Leung AS, Ngai DH, et al. (2014) Silencing by H-NS potentiated the evolution of Salmonella. PLoS Pathog 10: e1004500. doi: 10.1371/journal.ppat.1004500. pmid:25375226
[10]  Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, et al. (2012) Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes & Development 26: 2621–2633. doi: 10.1101/gad.196741.112
[11]  Singh SS, Singh N, Bonocora RP, Fitzgerald DM, Wade JT, et al. (2014) Widespread suppression of intragenic transcription initiation by H-NS. Genes & Development 28: 214–219. doi: 10.1101/gad.234336.113
[12]  Wade JT, Grainger DC (2014) Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nature Reviews Microbiology 12: 647–653. doi: 10.1038/nrmicro3316. pmid:25069631
[13]  Dame RT, Wyman C, Wurm R, Wagner R, Goosen N (2002) Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. The Journal of Biological Chemistry 277: 2146–2150. pmid:11714691 doi: 10.1074/jbc.c100603200
[14]  Dole S, Kuhn S, Schnetz K (2002) Post-transcriptional enhancement of Escherichia coli bgl operon silencing by limitation of BglG-mediated antitermination at low transcription rates. Molecular Microbiology 43: 217–226. pmid:11849549 doi: 10.1046/j.1365-2958.2002.02734.x
[15]  Dole S, Nagarajavel V, Schnetz K (2004) The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Molecular Microbiology 52: 589–600. pmid:15066043 doi: 10.1111/j.1365-2958.2004.04001.x
[16]  Saxena S, Gowrishankar J (2011) Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins. Journal of Bacteriology 193: 3832–3841. doi: 10.1128/JB.00220-11. pmid:21602341
[17]  Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, et al. (2015) Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. eLife 4. doi: 10.7554/elife.04970
[18]  Srinivasan R, Chandraprakash D, Krishnamurthi R, Singh P, Scolari VF, et al. (2013) Genomic analysis reveals epistatic silencing of "expensive" genes in Escherichia coli K-12. Mol Biosyst 9: 2021–2033. doi: 10.1039/c3mb70035f. pmid:23661089
[19]  Kahramanoglou C, Seshasayee AS, Prieto AI, Ibberson D, Schmidt S, et al. (2011) Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Research 39: 2073–2091. doi: 10.1093/nar/gkq934. pmid:21097887
[20]  Johansson J, Balsalobre C, Wang SY, Urbonaviciene J, Jin DJ, et al. (2000) Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP-CRP and the (p)ppGpp regulons in Escherichia coli. Cell 102: 475–485. pmid:10966109 doi: 10.1016/s0092-8674(00)00052-0
[21]  Srinivasan R, Scolari VF, Lagomarsino MC, Seshasayee AS (2015) The genome-scale interplay amongst xenogene silencing, stress response and chromosome architecture in Escherichia coli. Nucleic Acids Research 43: 295–308. doi: 10.1093/nar/gku1229. pmid:25429971
[22]  Brambilla E, Sclavi B (2015) Gene regulation by H-NS as a function of growth conditions depends on chromosomal position in Escherichia coli. G3 (Bethesda) 5: 605–614. doi: 10.1534/g3.114.016139
[23]  Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, et al. (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Molecular Microbiology 40: 20–36. pmid:11298273 doi: 10.1046/j.1365-2958.2001.02358.x
[24]  Madan Babu M, Teichmann SA, Aravind L (2006) Evolutionary dynamics of prokaryotic transcriptional regulatory networks. Journal of Molecular Biology 358: 614–633. pmid:16530225 doi: 10.1016/j.jmb.2006.02.019
[25]  Lercher MJ, Pal C (2008) Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol Biol Evol 25: 559–567. pmid:18158322 doi: 10.1093/molbev/msm283
[26]  Grainger DC, Hurd D, Goldberg MD, Busby SJ (2006) Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Research 34: 4642–4652. pmid:16963779 doi: 10.1093/nar/gkl542
[27]  Oshima T, Ishikawa S, Kurokawa K, Aiba H, Ogasawara N (2006) Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Research 13: 141–153. pmid:17046956 doi: 10.1093/dnares/dsl009
[28]  Uyar E, Kurokawa K, Yoshimura M, Ishikawa S, Ogasawara N, et al. (2009) Differential binding profiles of StpA in wild-type and h-ns mutant cells: a comparative analysis of cooperative partners by chromatin immunoprecipitation-microarray analysis. Journal of Bacteriology 191: 2388–2391. doi: 10.1128/JB.01594-08. pmid:19151137
[29]  Oshima K, Toh H, Ogura Y, Sasamoto H, Morita H, et al. (2008) Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult. DNA Research 15: 375–386. doi: 10.1093/dnares/dsn026. pmid:18931093
[30]  Toh H, Oshima K, Toyoda A, Ogura Y, Ooka T, et al. (2010) Complete genome sequence of the wild-type commensal Escherichia coli strain SE15, belonging to phylogenetic group B2. Journal of Bacteriology 192: 1165–1166. doi: 10.1128/JB.01543-09. pmid:20008064
[31]  Lecointre G, Rachdi L, Darlu P, Denamur E (1998) Escherichia coli molecular phylogeny using the incongruence length difference test. Mol Biol Evol 15: 1685–1695. pmid:9866203 doi: 10.1093/oxfordjournals.molbev.a025895
[32]  Escobar-Paramo P, Clermont O, Blanc-Potard AB, Bui H, Le Bouguenec C, et al. (2004) A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol 21: 1085–1094. pmid:15014151 doi: 10.1093/molbev/msh118
[33]  Sims GE, Kim SH (2011) Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs). Proceedings of the National Academy of Sciences of the United States of America 108: 8329–8334. doi: 10.1073/pnas.1105168108. pmid:21536867
[34]  Ishikawa S, Ogura Y, Yoshimura M, Okumura H, Cho E, et al. (2007) Distribution of stable DnaA-binding sites on the Bacillus subtilis genome detected using a modified ChIP-chip method. DNA Research 14: 155–168. pmid:17932079 doi: 10.1093/dnares/dsm017
[35]  Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research 14: 1394–1403. pmid:15231754 doi: 10.1101/gr.2289704
[36]  Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PloS One 5: e11147. doi: 10.1371/journal.pone.0011147. pmid:20593022
[37]  Pruitt KD, Tatusova T, Klimke W, Maglott DR (2009) NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Research 37: D32–36. doi: 10.1093/nar/gkn721. pmid:18927115
[38]  Hao W, Golding GB (2006) The fate of laterally transferred genes: life in the fast lane to adaptation or death. Genome Research 16: 636–643. pmid:16651664 doi: 10.1101/gr.4746406
[39]  Davids W, Zhang Z (2008) The impact of horizontal gene transfer in shaping operons and protein interaction networks—direct evidence of preferential attachment. BMC Evol Biol 8: 23. doi: 10.1186/1471-2148-8-23. pmid:18218112
[40]  Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proceedings of the National Academy of Sciences of the United States of America 95: 9413–9417. pmid:9689094 doi: 10.1073/pnas.95.16.9413
[41]  Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genetics 36: 760–766. pmid:15208628 doi: 10.1038/ng1381
[42]  Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Research 31: 187–189. pmid:12519978 doi: 10.1093/nar/gkg004
[43]  Uchiyama I (2003) MBGD: microbial genome database for comparative analysis. Nucleic Acids Research 31: 58–62. pmid:12519947 doi: 10.1093/nar/gkg109
[44]  Uchiyama I (2007) MBGD: a platform for microbial comparative genomics based on the automated construction of orthologous groups. Nucleic Acids Research 35: D343–346. pmid:17135196 doi: 10.1093/nar/gkl978
[45]  Uchiyama I, Higuchi T, Kawai M (2010) MBGD update 2010: toward a comprehensive resource for exploring microbial genome diversity. Nucleic Acids Research 38: D361–365. doi: 10.1093/nar/gkp948. pmid:19906735
[46]  Uchiyama I, Mihara M, Nishide H, Chiba H. (2015) MBGD update 2015: microbial genome database for flexible ortholog analysis utilizing a diverse set of genomic data. Nucleic Acids Research 43: D270–276. doi: 10.1093/nar/gku1152. pmid:25398900
[47]  Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, et al. (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329: 533–538. doi: 10.1126/science.1188308. pmid:20671182
[48]  Rocha EP, Danchin A (2004) An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21: 108–116. pmid:14595100 doi: 10.1093/molbev/msh004
[49]  Thomason MK, Bischler T, Eisenbart SK, Forstner KU, Zhang A, et al. (2015) Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. Journal of Bacteriology 197: 18–28. doi: 10.1128/JB.02096-14. pmid:25266388
[50]  Lodge J, Fear J, Busby S, Gunasekaran P, Kamini NR (1992) Broad host range plasmids carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol Lett 74: 271–276. pmid:1526459 doi: 10.1111/j.1574-6968.1992.tb05378.x
[51]  Nagarajavel V, Madhusudan S, Dole S, Rahmouni AR, Schnetz K (2007) Repression by binding of H-NS within the transcription unit. The Journal of Biological Chemistry 282: 23622–23630. pmid:17569663 doi: 10.1074/jbc.m702753200
[52]  Warnecke T, Supek F, Lehner B (2012) Nucleoid-associated proteins affect mutation dynamics in E. coli in a growth phase-specific manner. PLoS Comput Biol 8: e1002846. doi: 10.1371/journal.pcbi.1002846. pmid:23284284
[53]  Imashimizu M, Takahashi H, Oshima T, McIntosh C, Bubunenko M, et al. (2015) Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo. Genome Biology 16: 98. doi: 10.1186/s13059-015-0666-5. pmid:25976475
[54]  Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D, et al. (2014) A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344: 1042–1047. doi: 10.1126/science.1251871. pmid:24789973
[55]  Vvedenskaya IO, Vahedian-Movahed H, Bird JG, Knoblauch JG, Goldman SR, et al. (2014) Interactions between RNA polymerase and the "core recognition element" counteract pausing. Science 344: 1285–1289. doi: 10.1126/science.1253458. pmid:24926020
[56]  Pal C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nature Genetics 37: 1372–1375. pmid:16311593 doi: 10.1038/ng1686
[57]  Lehti TA, Bauchart P, Kukkonen M, Dobrindt U, Korhonen TK, et al. (2013) Phylogenetic group-associated differences in regulation of the common colonization factor Mat fimbria in Escherichia coli. Molecular Microbiology 87: 1200–1222. doi: 10.1111/mmi.12161. pmid:23347101
[58]  Amoros-Moya D, Bedhomme S, Hermann M, Bravo IG (2010) Evolution in regulatory regions rapidly compensates the cost of nonoptimal codon usage. Mol Biol Evol 27: 2141–2151. doi: 10.1093/molbev/msq103. pmid:20403964
[59]  Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America 97: 6640–6645. pmid:10829079 doi: 10.1073/pnas.120163297
[60]  Lee DJ, Bingle LE, Heurlier K, Pallen MJ, Penn CW, et al. (2009) Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiol 9: 252. doi: 10.1186/1471-2180-9-252. pmid:20003185
[61]  Herring CD, Glasner JD, Blattner FR (2003) Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311: 153–163. pmid:12853150 doi: 10.1016/s0378-1119(03)00585-7
[62]  Ueda T, Takahashi H, Uyar E, Ishikawa S, Ogasawara N, et al. (2013) Functions of the Hha and YdgT proteins in transcriptional silencing by the nucleoid proteins, H-NS and StpA, in Escherichia coli. DNA Research 20: 263–271. doi: 10.1093/dnares/dst008. pmid:23543115
[63]  Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Research 12: 656–664. pmid:11932250 doi: 10.1101/gr.229202
[64]  Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–359. doi: 10.1038/nmeth.1923. pmid:22388286
[65]  Li L, Stoeckert CJ Jr., Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research 13: 2178–2189. pmid:12952885 doi: 10.1101/gr.1224503
[66]  Leplae R, Lima-Mendez G, Toussaint A (2010) ACLAME: a CLAssification of Mobile genetic Elements, update 2010. Nucleic Acids Research 38: D57–61. doi: 10.1093/nar/gkp938. pmid:19933762
[67]  Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Research 34: D32–36. pmid:16381877 doi: 10.1093/nar/gkj014
[68]  Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: 286–298. doi: 10.1093/bib/bbn013. pmid:18372315
[69]  Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 540–552. pmid:10742046 doi: 10.1093/oxfordjournals.molbev.a026334
[70]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704. pmid:14530136 doi: 10.1080/10635150390235520
[71]  Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M, et al. (2009) Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 106: 17939–17944. doi: 10.1073/pnas.0903585106. pmid:19815525
[72]  Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556. pmid:9367129 doi: 10.1093/bioinformatics/13.5.555
[73]  Nelson-Sathi S, Sousa FL, Roettger M, Lozada-Chavez N, Thiergart T, et al. (2015) Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517: 77–80. doi: 10.1038/nature13805. pmid:25317564
[74]  Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, et al. (2015) Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524: 427–432. doi: 10.1038/nature14963. pmid:26287458
[75]  Lunter G, Rocco A, Mimouni N, Heger A, Caldeira A, et al. (2008) Uncertainty in homology inferences: assessing and improving genomic sequence alignment. Genome Research 18: 298–309. pmid:18073381 doi: 10.1101/gr.6725608
[76]  Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, et al. (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Research 39: D98–105. doi: 10.1093/nar/gkq1110. pmid:21051347
[77]  Miller JH (1972) Assay of the lac operon enzymes. In: Miller JH, editor. Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. pp. 349–376.
[78]  Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28: 1166–1167. doi: 10.1093/bioinformatics/bts091. pmid:22368248

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413