全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Short Telomeres in Key Tissues Initiate Local and Systemic Aging in Zebrafish

DOI: 10.1371/journal.pgen.1005798

Full-Text   Cite this paper   Add to My Lib

Abstract:

Telomeres shorten with each cell division and telomere dysfunction is a recognized hallmark of aging. Tissue proliferation is expected to dictate the rate at which telomeres shorten. We set out to test whether proliferative tissues age faster than non-proliferative due to telomere shortening during zebrafish aging. We performed a prospective study linking telomere length to tissue pathology and disease. Contrary to expectations, we show that telomeres shorten to critical lengths only in specific tissues and independently of their proliferation rate. Short telomeres accumulate in the gut but not in other highly proliferative tissues such as the blood and gonads. Notably, the muscle, a low proliferative tissue, accumulates short telomeres and DNA damage at the same rate as the gut. Together, our work shows that telomere shortening and DNA damage in key tissues triggers not only local dysfunction but also anticipates the onset of age-associated diseases in other tissues, including cancer.

References

[1]  de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes & development. 2005;19(18):2100–10. doi: 10.1101/gad.1346005 pmid:16166375.
[2]  Greider CW, Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 1989;337(6205):331–7. doi: 10.1038/337331a0 pmid:2463488.
[3]  Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of theoretical biology. 1973;41(1):181–90. pmid:4754905.
[4]  Watson JD. Origin of concatemeric T7 DNA. Nature: New biology. 1972;239(94):197–201. pmid:4507727. doi: 10.1038/newbio239197a0
[5]  Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60. doi: 10.1038/345458a0 pmid:2342578.
[6]  Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346(6287):866–8. doi: 10.1038/346866a0 pmid:2392154.
[7]  Vaziri H, Schachter F, Uchida I, Wei L, Zhu X, Effros R, et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. American journal of human genetics. 1993;52(4):661–7. pmid:8460632; PubMed Central PMCID: PMC1682068.
[8]  Forsyth NR, Wright WE, Shay JW. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation; research in biological diversity. 2002;69(4–5):188–97. doi: 10.1046/j.1432-0436.2002.690412.x pmid:11841477.
[9]  Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS genetics. 2012;8(5):e1002696. doi: 10.1371/journal.pgen.1002696 pmid:22661914; PubMed Central PMCID: PMC3355073.
[10]  Aubert G, Lansdorp PM. Telomeres and aging. Physiological reviews. 2008;88(2):557–79. doi: 10.1152/physrev.00026.2007 pmid:18391173.
[11]  Baerlocher GM, Rice K, Vulto I, Lansdorp PM. Longitudinal data on telomere length in leukocytes from newborn baboons support a marked drop in stem cell turnover around 1 year of age. Aging cell. 2007;6(1):121–3. doi: 10.1111/j.1474-9726.2006.00254.x pmid:17156085.
[12]  Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5. pmid:7605428. doi: 10.1126/science.7605428
[13]  Begus-Nahrmann Y, Lechel A, Obenauf AC, Nalapareddy K, Peit E, Hoffmann E, et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nature genetics. 2009;41(10):1138–43. doi: 10.1038/ng.426 pmid:19718028.
[14]  Campisi J. Cell biology: The beginning of the end. Nature. 2014;505(7481):35–6. doi: 10.1038/nature12844 pmid:24352243; PubMed Central PMCID: PMC4167797.
[15]  Armanios M. Syndromes of telomere shortening. Annual review of genomics and human genetics. 2009;10:45–61. doi: 10.1146/annurev-genom-082908-150046 pmid:19405848; PubMed Central PMCID: PMC2818564.
[16]  Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J. Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(7):2205–10. doi: 10.1073/pnas.0609410104 pmid:17284601; PubMed Central PMCID: PMC1794219.
[17]  Shay JW, Wright WE. Telomeres in dyskeratosis congenita. Nature genetics. 2004;36(5):437–8. doi: 10.1038/ng0504-437 pmid:15118675.
[18]  Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. Protein composition of catalytically active human telomerase from immortal cells. Science. 2007;315(5820):1850–3. doi: 10.1126/science.1138596 pmid:17395830.
[19]  Armanios M, Chen JL, Chang YP, Brodsky RA, Hawkins A, Griffin CA, et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(44):15960–4. doi: 10.1073/pnas.0508124102 pmid:16247010; PubMed Central PMCID: PMC1276104.
[20]  Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature genetics. 1998;19(1):32–8. doi: 10.1038/ng0598-32 pmid:9590285.
[21]  Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature. 2001;413(6854):432–5. doi: 10.1038/35096585 pmid:11574891.
[22]  Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. American journal of human genetics. 2008;82(2):501–9. doi: 10.1016/j.ajhg.2007.10.004 pmid:18252230; PubMed Central PMCID: PMC2427222.
[23]  Knight SW, Heiss NS, Vulliamy TJ, Greschner S, Stavrides G, Pai GS, et al. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. American journal of human genetics. 1999;65(1):50–8. doi: 10.1086/302446 pmid:10364516; PubMed Central PMCID: PMC1378074.
[24]  Knight SW, Heiss NS, Vulliamy TJ, Aalfs CM, McMahon C, Richmond P, et al. Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal-Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. British journal of haematology. 1999;107(2):335–9. pmid:10583221. doi: 10.1046/j.1365-2141.1999.01690.x
[25]  Armanios M, Alder JK, Parry EM, Karim B, Strong MA, Greider CW. Short telomeres are sufficient to cause the degenerative defects associated with aging. American journal of human genetics. 2009;85(6):823–32. doi: 10.1016/j.ajhg.2009.10.028 pmid:19944403; PubMed Central PMCID: PMC2790562.
[26]  Holohan B, Wright WE, Shay JW. Cell biology of disease: Telomeropathies: an emerging spectrum disorder. The Journal of cell biology. 2014;205(3):289–99. doi: 10.1083/jcb.201401012 pmid:24821837; PubMed Central PMCID: PMC4018777.
[27]  Alter BP, Rosenberg PS, Giri N, Baerlocher GM, Lansdorp PM, Savage SA. Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. Haematologica. 2012;97(3):353–9. doi: 10.3324/haematol.2011.055269 pmid:22058220; PubMed Central PMCID: PMC3291588.
[28]  Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood. 2008;112(9):3594–600. doi: 10.1182/blood-2008-05-153445 pmid:18669893; PubMed Central PMCID: PMC2572788.
[29]  Anchelin M, Alcaraz-Perez F, Martinez CM, Bernabe-Garcia M, Mulero V, Cayuela ML. Premature aging in telomerase-deficient zebrafish. Disease models & mechanisms. 2013;6(5):1101–12. doi: 10.1242/dmm.011635 pmid:23744274; PubMed Central PMCID: PMC3759330.
[30]  Henriques CM, Carneiro MC, Tenente IM, Jacinto A, Ferreira MG. Telomerase is required for zebrafish lifespan. PLoS genetics. 2013;9(1):e1003214. doi: 10.1371/journal.pgen.1003214 pmid:23349637; PubMed Central PMCID: PMC3547866.
[31]  Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011;469(7328):102–6. doi: 10.1038/nature09603 pmid:21113150; PubMed Central PMCID: PMC3057569.
[32]  Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392(6676):569–74. doi: 10.1038/33345 pmid:9560153.
[33]  Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96(5):701–12. pmid:10089885. doi: 10.1016/s0092-8674(00)80580-2
[34]  Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470(7334):359–65. doi: 10.1038/nature09787 pmid:21307849; PubMed Central PMCID: PMC3741661.
[35]  Dimri GP, Itahana K, Acosta M, Campisi J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Molecular and cellular biology. 2000;20(1):273–85. pmid:10594030; PubMed Central PMCID: PMC85083. doi: 10.1128/mcb.20.1.273-285.2000
[36]  Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS biology. 2008;6(12):2853–68. doi: 10.1371/journal.pbio.0060301 pmid:19053174; PubMed Central PMCID: PMC2592359.
[37]  Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Seminars in cancer biology. 2011;21(6):354–9. doi: 10.1016/j.semcancer.2011.09.001 pmid:21925603; PubMed Central PMCID: PMC3230665.
[38]  Choi J, Southworth LK, Sarin KY, Venteicher AS, Ma W, Chang W, et al. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS genetics. 2008;4(1):e10. Epub 2008/01/23. 07-PLGE-RA-0657 [pii] doi: 10.1371/journal.pgen.0040010 pmid:18208333; PubMed Central PMCID: PMC2211538.
[39]  Blasco MA, Rizen M, Greider CW, Hanahan D. Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nature genetics. 1996;12(2):200–4. Epub 1996/02/01. doi: 10.1038/ng0296-200 pmid:8563761.
[40]  Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 44(4):667–78. Epub 2011/10/04. S1097-2765(11)00680-0 [pii] doi: 10.1016/j.molcel.2011.08.027 pmid:21963238; PubMed Central PMCID: PMC3249421.
[41]  Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, et al. An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature. 2009;461(7261):230–5. Epub 2009/08/25. nature08283 [pii] doi: 10.1038/nature08283 pmid:19701182; PubMed Central PMCID: PMC2755635.
[42]  Ahmed S, Passos JF, Birket MJ, Beckmann T, Brings S, Peters H, et al. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. Journal of cell science. 2008;121(Pt 7):1046–53. Epub 2008/03/13. jcs.019372 [pii] doi: 10.1242/jcs.019372 pmid:18334557.
[43]  Santos JH, Meyer JN, Skorvaga M, Annab LA, Van Houten B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging cell. 2004;3(6):399–411. Epub 2004/12/01. ACE124 [pii] doi: 10.1111/j.1474-9728.2004.00124.x pmid:15569357.
[44]  Campisi J, Sedivy J. How does proliferative homeostasis change with age? What causes it and how does it contribute to aging? The journals of gerontology Series A, Biological sciences and medical sciences. 2009;64(2):164–6. doi: 10.1093/gerona/gln073 pmid:19228778; PubMed Central PMCID: PMC2655008.
[45]  Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. doi: 10.1016/j.cell.2013.05.039 pmid:23746838; PubMed Central PMCID: PMC3836174.
[46]  Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. The Journal of clinical investigation. 2013;123(3):966–72. doi: 10.1172/JCI64098 pmid:23454759; PubMed Central PMCID: PMC3582125.
[47]  Anchelin M, Murcia L, Alcaraz-Perez F, Garcia-Navarro EM, Cayuela ML. Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PloS one. 2011;6(2):e16955. doi: 10.1371/journal.pone.0016955 pmid:21347393; PubMed Central PMCID: PMC3036734.
[48]  Kishi S. Functional aging and gradual senescence in zebrafish. Annals of the New York Academy of Sciences. 2004;1019:521–6. doi: 10.1196/annals.1297.097 pmid:15247079.
[49]  Kishi S, Uchiyama J, Baughman AM, Goto T, Lin MC, Tsai SB. The zebrafish as a vertebrate model of functional aging and very gradual senescence. Experimental gerontology. 2003;38(7):777–86. pmid:12855287. doi: 10.1016/s0531-5565(03)00108-6
[50]  Yu L, Tucci V, Kishi S, Zhdanova IV. Cognitive aging in zebrafish. PloS one. 2006;1:e14. doi: 10.1371/journal.pone.0000014 pmid:17183640; PubMed Central PMCID: PMC1762370.
[51]  Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nature communications. 2013;4:1597. doi: 10.1038/ncomms2602 pmid:23511462; PubMed Central PMCID: PMC3615479.
[52]  Reichert S, Criscuolo F, Verinaud E, Zahn S, Massemin S. Telomere length correlations among somatic tissues in adult zebra finches. PloS one. 2013;8(12):e81496. doi: 10.1371/journal.pone.0081496 pmid:24349076; PubMed Central PMCID: PMC3857187.
[53]  Elmore LW, Norris MW, Sircar S, Bright AT, McChesney PA, Winn RN, et al. Upregulation of telomerase function during tissue regeneration. Experimental biology and medicine. 2008;233(8):958–67. doi: 10.3181/0712-RM-345 pmid:18480423.
[54]  Kimura M, Stone RC, Hunt SC, Skurnick J, Lu X, Cao X, et al. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nature protocols. 2010;5(9):1596–607. doi: 10.1038/nprot.2010.124 pmid:21085125.
[55]  Rhee DB, Ghosh A, Lu J, Bohr VA, Liu Y. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1. DNA Repair (Amst). 10(1):34–44. Epub 2010/10/19. S1568-7864(10)00313-7 [pii] doi: 10.1016/j.dnarep.2010.09.008 pmid:20951653; PubMed Central PMCID: PMC3010491.
[56]  Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, et al. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing research reviews. 2013;12(2):661–84. doi: 10.1016/j.arr.2012.02.001 pmid:22353384.
[57]  d'Adda di Fagagna F. Living on a break: cellular senescence as a DNA-damage response. Nature reviews Cancer. 2008;8(7):512–22. doi: 10.1038/nrc2440 pmid:18574463.
[58]  Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature communications. 2012;3:708. doi: 10.1038/ncomms1708 pmid:22426229; PubMed Central PMCID: PMC3292717.
[59]  Kaul Z, Cesare AJ, Huschtscha LI, Neumann AA, Reddel RR. Five dysfunctional telomeres predict onset of senescence in human cells. EMBO reports. 2012;13(1):52–9. doi: 10.1038/embor.2011.227 pmid:22157895; PubMed Central PMCID: PMC3246253.
[60]  Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. 2006;311(5765):1257. Epub 2006/02/04. 1122446 [pii] doi: 10.1126/science.1122446 pmid:16456035.
[61]  Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, et al. The origins of age-related proinflammatory state. Blood. 2005;105(6):2294–9. doi: 10.1182/blood-2004-07-2599 pmid:15572589.
[62]  Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences. 2000;908:244–54. pmid:10911963. doi: 10.1111/j.1749-6632.2000.tb06651.x
[63]  Vasto S, Candore G, Balistreri CR, Caruso M, Colonna-Romano G, Grimaldi MP, et al. Inflammatory networks in ageing, age-related diseases and longevity. Mechanisms of ageing and development. 2007;128(1):83–91. doi: 10.1016/j.mad.2006.11.015 pmid:17118425.
[64]  Lumeng CN, Liu J, Geletka L, Delaney C, Delproposto J, Desai A, et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. Journal of immunology. 2011;187(12):6208–16. doi: 10.4049/jimmunol.1102188 pmid:22075699; PubMed Central PMCID: PMC3237772.
[65]  Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science. 2011;333(6046):1109–12. doi: 10.1126/science.1201940 pmid:21868666; PubMed Central PMCID: PMC3405151.
[66]  Man AL, Gicheva N, Nicoletti C. The impact of ageing on the intestinal epithelial barrier and immune system. Cellular immunology. 2014;289(1–2):112–8. doi: 10.1016/j.cellimm.2014.04.001 pmid:24759078.
[67]  Martin K, Potten CS, Roberts SA, Kirkwood TB. Altered stem cell regeneration in irradiated intestinal crypts of senescent mice. Journal of cell science. 1998;111 (Pt 16):2297–303. pmid:9683625.
[68]  Tiihonen K, Ouwehand AC, Rautonen N. Human intestinal microbiota and healthy ageing. Ageing research reviews. 2010;9(2):107–16. doi: 10.1016/j.arr.2009.10.004 pmid:19874918.
[69]  Thomas DR. Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clinical nutrition. 2007;26(4):389–99. doi: 10.1016/j.clnu.2007.03.008 pmid:17499396.
[70]  Erdmann N, Liu Y, Harrington L. Distinct dosage requirements for the maintenance of long and short telomeres in mTert heterozygous mice. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(16):6080–5. doi: 10.1073/pnas.0401580101 pmid:15079066; PubMed Central PMCID: PMC395926.
[71]  Meznikova M, Erdmann N, Allsopp R, Harrington LA. Telomerase reverse transcriptase-dependent telomere equilibration mitigates tissue dysfunction in mTert heterozygotes. Disease models & mechanisms. 2009;2(11–12):620–6. doi: 10.1242/dmm.004069 pmid:19841238; PubMed Central PMCID: PMC2773729.
[72]  Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464(7288):520–8. doi: 10.1038/nature08982 pmid:20336134; PubMed Central PMCID: PMC3733214.
[73]  Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging cell. 2012;11(5):867–75. doi: 10.1111/j.1474-9726.2012.00851.x pmid:22708967.
[74]  Ali S, Garcia JM. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options—a mini-review. Gerontology. 2014;60(4):294–305. doi: 10.1159/000356760 pmid:24731978; PubMed Central PMCID: PMC4112511.
[75]  Spitsbergen JM, Buhler DR, Peterson TS. Neoplasia and neoplasm-associated lesions in laboratory colonies of zebrafish emphasizing key influences of diet and aquaculture system design. ILAR journal / National Research Council, Institute of Laboratory Animal Resources. 2012;53(2):114–25. doi: 10.1093/ilar.53.2.114 pmid:23382343; PubMed Central PMCID: PMC4154580.
[76]  Kuk JL, Saunders TJ, Davidson LE, Ross R. Age-related changes in total and regional fat distribution. Ageing research reviews. 2009;8(4):339–48. doi: 10.1016/j.arr.2009.06.001 pmid:19576300.
[77]  Miyazaki Teruo K SS, Miyashita Toshio. A Histopathological study of Pseudomonas fluorescens infection in tilapia. Fish Pathology. 1984;19:161–6. doi: 10.3147/jsfp.19.161
[78]  Wada S, Hatai K, Tanaka E, Kitahara T. Mixed infection of an acid-fast bacterium and an imperfect fungus in a Napoleon fish (Cheilinus undulatus). Journal of wildlife diseases. 1993;29(4):591–5. doi: 10.7589/0090-3558-29.4.591 pmid:8258860.
[79]  Bernardes de Jesus B, Blasco MA. Telomerase at the intersection of cancer and aging. Trends in genetics: TIG. 2013;29(9):513–20. doi: 10.1016/j.tig.2013.06.007 pmid:23876621; PubMed Central PMCID: PMC3896987.
[80]  Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: a cancer journal for clinicians. 2011;61(2):69–90. doi: 10.3322/caac.20107 pmid:21296855.
[81]  Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Seminars in cancer biology. 2011;21(6):349–53. doi: 10.1016/j.semcancer.2011.10.001 pmid:22015685; PubMed Central PMCID: PMC3370415.
[82]  Feitsma H, Cuppen E. Zebrafish as a cancer model. Molecular cancer research: MCR. 2008;6(5):685–94. doi: 10.1158/1541-7786.MCR-07-2167 pmid:18505914.
[83]  White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nature reviews Cancer. 2013;13(9):624–36. doi: 10.1038/nrc3589 pmid:23969693.
[84]  Lugo-Villarino G, Balla KM, Stachura DL, Banuelos K, Werneck MB, Traver D. Identification of dendritic antigen-presenting cells in the zebrafish. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(36):15850–5. doi: 10.1073/pnas.1000494107 pmid:20733076; PubMed Central PMCID: PMC2936643.
[85]  Balla KM, Lugo-Villarino G, Spitsbergen JM, Stachura DL, Hu Y, Banuelos K, et al. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood. 2010;116(19):3944–54. doi: 10.1182/blood-2010-03-267419 pmid:20713961; PubMed Central PMCID: PMC2981543.
[86]  Reite OB, Evensen O. Inflammatory cells of teleostean fish: a review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish & shellfish immunology. 2006;20(2):192–208. doi: 10.1016/j.fsi.2005.01.012 pmid:15978838.
[87]  Da'as S, Teh EM, Dobson JT, Nasrallah GK, McBride ER, Wang H, et al. Zebrafish mast cells possess an FcvarepsilonRI-like receptor and participate in innate and adaptive immune responses. Developmental and comparative immunology. 2011;35(1):125–34. doi: 10.1016/j.dci.2010.09.001 pmid:20849876.
[88]  Shay JW, Wright WE. Hallmarks of telomeres in ageing research. The Journal of pathology. 2007;211(2):114–23. doi: 10.1002/path.2090 pmid:17200948.
[89]  Sahin E, DePinho RA. Axis of ageing: telomeres, p53 and mitochondria. Nature reviews Molecular cell biology. 2012;13(6):397–404. doi: 10.1038/nrm3352 pmid:22588366; PubMed Central PMCID: PMC3718675.
[90]  Reddel RR. Alternative lengthening of telomeres, telomerase, and cancer. Cancer letters. 2003;194(2):155–62. pmid:12757973. doi: 10.1016/s0304-3835(02)00702-4
[91]  Murnane JP, Sabatier L, Marder BA, Morgan WF. Telomere dynamics in an immortal human cell line. The EMBO journal. 1994;13(20):4953–62. pmid:7957062; PubMed Central PMCID: PMC395436.
[92]  Farazi PA, Glickman J, Jiang S, Yu A, Rudolph KL, DePinho RA. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer research. 2003;63(16):5021–7. pmid:12941829.
[93]  Hu J, Hwang SS, Liesa M, Gan B, Sahin E, Jaskelioff M, et al. Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell. 2012;148(4):651–63. doi: 10.1016/j.cell.2011.12.028 pmid:22341440; PubMed Central PMCID: PMC3286017.
[94]  Bojovic B, Crowe DL. Dysfunctional telomeres promote genomic instability and metastasis in the absence of telomerase activity in oncogene induced mammary cancer. Molecular carcinogenesis. 2013;52(2):103–17. doi: 10.1002/mc.21834 pmid:22086874.
[95]  Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature. 2000;406(6796):641–5. doi: 10.1038/35020592 pmid:10949306.
[96]  von Zglinicki T. Oxidative stress shortens telomeres. Trends in biochemical sciences. 2002;27(7):339–44. pmid:12114022. doi: 10.1016/s0968-0004(02)02110-2
[97]  Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature cell biology. 2012;14(4):355–65. doi: 10.1038/ncb2466 pmid:22426077; PubMed Central PMCID: PMC3717580.
[98]  Lundblad V, Blackburn EH. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell. 1993;73(2):347–60. Epub 1993/04/23. 0092-8674(93)90234-H [pii]. pmid:8477448. doi: 10.1016/0092-8674(93)90234-h
[99]  Brault ME, Autexier C. Telomeric recombination induced by dysfunctional telomeres. Mol Biol Cell. 22(2):179–88. Epub 2010/12/02. mbc.E10-02-0173 [pii] doi: 10.1091/mbc.E10-02-0173 pmid:21118998; PubMed Central PMCID: PMC3020914.
[100]  Morrish TA, Greider CW. Short telomeres initiate telomere recombination in primary and tumor cells. PLoS genetics. 2009;5(1):e1000357. doi: 10.1371/journal.pgen.1000357 pmid:19180191; PubMed Central PMCID: PMC2627939.
[101]  Yuki A, Otsuka R, Kozakai R, Kitamura I, Okura T, Ando F, et al. Relationship between low free testosterone levels and loss of muscle mass. Scientific reports. 2013;3:1818. doi: 10.1038/srep01818 pmid:23660939.
[102]  Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. Journal of immunology. 1995;155(8):3711–5. pmid:7561072.
[103]  Mukherjee S, Firpo EJ, Wang Y, Roberts JM. Separation of telomerase functions by reverse genetics. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(50):E1363–71. doi: 10.1073/pnas.1112414108 pmid:21949400; PubMed Central PMCID: PMC3250197.
[104]  Imamura S, Uchiyama J, Koshimizu E, Hanai J, Raftopoulou C, Murphey RD, et al. A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PloS one. 2008;3(10):e3364. doi: 10.1371/journal.pone.0003364 pmid:18846223; PubMed Central PMCID: PMC2561060.
[105]  Alcaraz-Perez F, Garcia-Castillo J, Garcia-Moreno D, Lopez-Munoz A, Anchelin M, Angosto D, et al. A non-canonical function of telomerase RNA in the regulation of developmental myelopoiesis in zebrafish. Nature communications. 2014;5:3228. doi: 10.1038/ncomms4228 pmid:24496182.
[106]  Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009;460(7251):66–72. doi: 10.1038/nature08137 pmid:19571879.
[107]  Zhang Y, Morimoto K, Danilova N, Zhang B, Lin S. Zebrafish models for dyskeratosis congenita reveal critical roles of p53 activation contributing to hematopoietic defects through RNA processing. PloS one. 7(1):e30188. Epub 2012/02/03. doi: 10.1371/journal.pone.0030188 PONE-D-11-19647 [pii]. pmid:22299032; PubMed Central PMCID: PMC3267717.
[108]  Henriques CM, Ferreira MG. Consequences of telomere shortening during lifespan. Current opinion in cell biology. 2012;24(6):804–8. doi: 10.1016/j.ceb.2012.09.007 pmid:23127607.
[109]  Ding Z, Wu CJ, Jaskelioff M, Ivanova E, Kost-Alimova M, Protopopov A, et al. Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell. 2012;148(5):896–907. doi: 10.1016/j.cell.2012.01.039 pmid:22341455; PubMed Central PMCID: PMC3629723.
[110]  Kishi S, Bayliss PE, Uchiyama J, Koshimizu E, Qi J, Nanjappa P, et al. The identification of zebrafish mutants showing alterations in senescence-associated biomarkers. PLoS genetics. 2008;4(8):e1000152. doi: 10.1371/journal.pgen.1000152 pmid:18704191; PubMed Central PMCID: PMC2515337.
[111]  Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 pmid:22743772; PubMed Central PMCID: PMC3855844.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133