全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction

DOI: 10.1371/journal.pgen.1005810

Full-Text   Cite this paper   Add to My Lib

Abstract:

At the Drosophila NMJ, BMP signaling is critical for synapse growth and homeostasis. Signaling by the BMP7 homolog, Gbb, in motor neurons triggers a canonical pathway—which modulates transcription of BMP target genes, and a noncanonical pathway—which connects local BMP/BMP receptor complexes with the cytoskeleton. Here we describe a novel noncanonical BMP pathway characterized by the accumulation of the pathway effector, the phosphorylated Smad (pMad), at synaptic sites. Using genetic epistasis, histology, super resolution microscopy, and electrophysiology approaches we demonstrate that this novel pathway is genetically distinguishable from all other known BMP signaling cascades. This novel pathway does not require Gbb, but depends on presynaptic BMP receptors and specific postsynaptic glutamate receptor subtypes, the type-A receptors. Synaptic pMad is coordinated to BMP’s role in the transcriptional control of target genes by shared pathway components, but it has no role in the regulation of NMJ growth. Instead, selective disruption of presynaptic pMad accumulation reduces the postsynaptic levels of type-A receptors, revealing a positive feedback loop which appears to function to stabilize active type-A receptors at synaptic sites. Thus, BMP pathway may monitor synapse activity then function to adjust synapse growth and maturation during development.

References

[1]  Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584. pmid:14534577 doi: 10.1038/nature02006
[2]  Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6: 432–438. pmid:8791534 doi: 10.1016/s0959-437x(96)80064-5
[3]  Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6: 597–641. pmid:2177343 doi: 10.1146/annurev.cb.06.110190.003121
[4]  Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21: 659–693. pmid:16212511 doi: 10.1146/annurev.cellbio.21.022404.142018
[5]  Schmierer B, Hill CS (2007) TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8: 970–982. pmid:18000526 doi: 10.1038/nrm2297
[6]  Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118: 3573–3584. pmid:16105881 doi: 10.1242/jcs.02554
[7]  Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19: 128–139. doi: 10.1038/cr.2008.328. pmid:19114990
[8]  Eom DS, Amarnath S, Fogel JL, Agarwala S (2011) Bone morphogenetic proteins regulate neural tube closure by interacting with the apicobasal polarity pathway. Development 138: 3179–3188. doi: 10.1242/dev.058602. pmid:21750029
[9]  Dudu V, Bittig T, Entchev E, Kicheva A, Julicher F, et al. (2006) Postsynaptic mad signaling at the Drosophila neuromuscular junction. Curr Biol 16: 625–635. pmid:16581507 doi: 10.1016/j.cub.2006.02.061
[10]  Smith RB, Machamer JB, Kim NC, Hays TS, Marques G (2012) Relay of retrograde synaptogenic signals through axonal transport of BMP receptors. J Cell Sci 125: 3752–3764. doi: 10.1242/jcs.094292. pmid:22573823
[11]  Eom DS, Amarnath S, Fogel JL, Agarwala S (2012) Bone morphogenetic proteins regulate hinge point formation during neural tube closure by dynamic modulation of apicobasal polarity. Birth Defects Res A Clin Mol Teratol 94: 804–816. doi: 10.1002/bdra.23052. pmid:22865775
[12]  Sulkowski M, Kim YJ, Serpe M (2014) Postsynaptic glutamate receptors regulate local BMP signaling at the Drosophila neuromuscular junction. Development 141: 436–447. doi: 10.1242/dev.097758. pmid:24353060
[13]  Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29: 307–323. pmid:16776588 doi: 10.1146/annurev.neuro.28.061604.135751
[14]  Aberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhaes TR, et al. (2002) wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33: 545–558. pmid:11856529 doi: 10.1016/s0896-6273(02)00589-5
[15]  Marques G, Bao H, Haerry TE, Shimell MJ, Duchek P, et al. (2002) The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33: 529–543. pmid:11856528 doi: 10.1016/s0896-6273(02)00595-0
[16]  McCabe BD, Marques G, Haghighi AP, Fetter RD, Crotty ML, et al. (2003) The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39: 241–254. pmid:12873382 doi: 10.1016/s0896-6273(03)00426-4
[17]  McCabe BD, Hom S, Aberle H, Fetter RD, Marques G, et al. (2004) Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41: 891–905. pmid:15046722 doi: 10.1016/s0896-6273(04)00073-x
[18]  Ball RW, Warren-Paquin M, Tsurudome K, Liao EH, Elazzouzi F, et al. (2010) Retrograde BMP signaling controls synaptic growth at the NMJ by regulating trio expression in motor neurons. Neuron 66: 536–549. doi: 10.1016/j.neuron.2010.04.011. pmid:20510858
[19]  Kim NC, Marques G (2012) The Ly6 neurotoxin-like molecule target of wit regulates spontaneous neurotransmitter release at the developing neuromuscular junction in Drosophila. Dev Neurobiol 72: 1541–1558. doi: 10.1002/dneu.22021. pmid:22467519
[20]  Eaton BA, Davis GW (2005) LIM Kinase1 controls synaptic stability downstream of the type II BMP receptor. Neuron 47: 695–708. pmid:16129399 doi: 10.1016/j.neuron.2005.08.010
[21]  Piccioli ZD, Littleton JT (2014) Retrograde BMP signaling modulates rapid activity-dependent synaptic growth via presynaptic LIM kinase regulation of cofilin. J Neurosci 34: 4371–4381. doi: 10.1523/JNEUROSCI.4943-13.2014. pmid:24647957
[22]  Dickman DK, Lu Z, Meinertzhagen IA, Schwarz TL (2006) Altered synaptic development and active zone spacing in endocytosis mutants. Curr Biol 16: 591–598. pmid:16546084 doi: 10.1016/j.cub.2006.02.058
[23]  Vanlandingham PA, Fore TR, Chastain LR, Royer SM, Bao H, et al. (2013) Epsin 1 Promotes Synaptic Growth by Enhancing BMP Signal Levels in Motoneuron Nuclei. PLoS One 8: e65997. pmid:23840387 doi: 10.1371/journal.pone.0065997
[24]  Berke B, Wittnam J, McNeill E, Van Vactor DL, Keshishian H (2013) Retrograde BMP signaling at the synapse: a permissive signal for synapse maturation and activity-dependent plasticity. J Neurosci 33: 17937–17950. doi: 10.1523/JNEUROSCI.6075-11.2013. pmid:24198381
[25]  Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A (1997) Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19: 1237–1248. pmid:9427247 doi: 10.1016/s0896-6273(00)80415-8
[26]  DiAntonio A, Petersen SA, Heckmann M, Goodman CS (1999) Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. J Neurosci 19: 3023–3032. pmid:10191319
[27]  Marrus SB, Portman SL, Allen MJ, Moffat KG, DiAntonio A (2004) Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J Neurosci 24: 1406–1415. pmid:14960613 doi: 10.1523/jneurosci.1575-03.2004
[28]  Liebl FL, Featherstone DE (2005) Genes involved in Drosophila glutamate receptor expression and localization. BMC Neurosci 6: 44. pmid:15985179
[29]  Qin G, Schwarz T, Kittel RJ, Schmid A, Rasse TM, et al. (2005) Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J Neurosci 25: 3209–3218. pmid:15788778 doi: 10.1523/jneurosci.4194-04.2005
[30]  DiAntonio A (2006) Glutamate receptors at the Drosophila neuromuscular junction. Int Rev Neurobiol 75: 165–179. pmid:17137928 doi: 10.1016/s0074-7742(06)75008-5
[31]  Petzoldt AG, Lee YH, Khorramshahi O, Reynolds E, Plested AJ, et al. (2014) Gating characteristics control glutamate receptor distribution and trafficking in vivo. Curr Biol 24: 2059–2065. doi: 10.1016/j.cub.2014.07.051. pmid:25131677
[32]  Thomas U, Sigrist SJ (2012) Glutamate receptors in synaptic assembly and plasticity: case studies on fly NMJs. Adv Exp Med Biol 970: 3–28. doi: 10.1007/978-3-7091-0932-8_1. pmid:22351049
[33]  O'Connor MB, Umulis D, Othmer HG, Blair SS (2006) Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 133: 183–193. pmid:16368928 doi: 10.1242/dev.02214
[34]  Ramel MC, Hill CS (2012) Spatial regulation of BMP activity. FEBS Lett 586: 1929–1941. doi: 10.1016/j.febslet.2012.02.035. pmid:22710177
[35]  Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, et al. (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49: 833–844. pmid:16543132 doi: 10.1016/j.neuron.2006.02.008
[36]  Fouquet W, Owald D, Wichmann C, Mertel S, Depner H, et al. (2009) Maturation of active zone assembly by Drosophila Bruchpilot. J Cell Biol 186: 129–145. doi: 10.1083/jcb.200812150. pmid:19596851
[37]  Kim YJ, Bao H, Bonanno L, Zhang B, Serpe M (2012) Drosophila Neto is essential for clustering glutamate receptors at the neuromuscular junction. Genes Dev 26: 974–987. doi: 10.1101/gad.185165.111. pmid:22499592
[38]  Han TH, Dharkar P, Mayer ML, Serpe M (2015) Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors. Proc Natl Acad Sci U S A 112: 6182–6187. doi: 10.1073/pnas.1500458112. pmid:25918369
[39]  Kim YJ, Igiesuorobo O, Ramos CI, Bao H, Zhang B, et al. (2015) Prodomain removal enables neto to stabilize glutamate receptors at the Drosophila neuromuscular junction. PLoS Genet 11: e1004988. doi: 10.1371/journal.pgen.1004988. pmid:25723514
[40]  Ramos CI, Igiesuorobo O, Wang Q, Serpe M (2015) Neto-mediated intracellular interactions shape postsynaptic composition at the Drosophila neuromuscular junction. PLoS Genet 11: e1005191. doi: 10.1371/journal.pgen.1005191. pmid:25905467
[41]  Fuentes-Medel Y, Ashley J, Barria R, Maloney R, Freeman M, et al. (2012) Integration of a Retrograde Signal during Synapse Formation by Glia-Secreted TGF-beta Ligand. Curr Biol 22: 1831–1838. doi: 10.1016/j.cub.2012.07.063. pmid:22959350
[42]  Higashi-Kovtun ME, Mosca TJ, Dickman DK, Meinertzhagen IA, Schwarz TL (2010) Importin-beta11 regulates synaptic phosphorylated mothers against decapentaplegic, and thereby influences synaptic development and function at the Drosophila neuromuscular junction. J Neurosci 30: 5253–5268. doi: 10.1523/JNEUROSCI.3739-09.2010. pmid:20392948
[43]  Eivers E, Fuentealba LC, Sander V, Clemens JC, Hartnett L, et al. (2009) Mad is required for wingless signaling in wing development and segment patterning in Drosophila. PLoS One 4: e6543. doi: 10.1371/journal.pone.0006543. pmid:19657393
[44]  O'Connor-Giles KM, Ganetzky B (2008) Satellite signaling at synapses. Fly (Austin) 2: 259–261. doi: 10.4161/fly.7133
[45]  O'Connor-Giles KM, Ho LL, Ganetzky B (2008) Nervous wreck interacts with thickveins and the endocytic machinery to attenuate retrograde BMP signaling during synaptic growth. Neuron 58: 507–518. doi: 10.1016/j.neuron.2008.03.007. pmid:18498733
[46]  Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, et al. (2000) Highwire regulates synaptic growth in Drosophila. Neuron 26: 313–329. pmid:10839352 doi: 10.1016/s0896-6273(00)81166-6
[47]  Collins CA, Wairkar YP, Johnson SL, DiAntonio A (2006) Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51: 57–69. pmid:16815332 doi: 10.1016/j.neuron.2006.05.026
[48]  Wang X, Shaw WR, Tsang HT, Reid E, O'Kane CJ (2007) Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nat Neurosci 10: 177–185. pmid:17220882 doi: 10.1038/nn1841
[49]  Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19: 2783–2810. pmid:16322555 doi: 10.1101/gad.1350705
[50]  Xu P, Liu J, Derynck R (2012) Post-translational regulation of TGF-beta receptor and Smad signaling. FEBS Lett 586: 1871–1884. doi: 10.1016/j.febslet.2012.05.010. pmid:22617150
[51]  Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, et al. (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8: 737–743. pmid:21985007 doi: 10.1038/nmeth.1662
[52]  Ballard SL, Jarolimova J, Wharton KA (2010) Gbb/BMP signaling is required to maintain energy homeostasis in Drosophila. Dev Biol 337: 375–385. doi: 10.1016/j.ydbio.2009.11.011. pmid:19914231
[53]  James RE, Hoover KM, Bulgari D, McLaughlin CN, Wilson CG, et al. (2014) Crimpy Enables Discrimination of Presynaptic and Postsynaptic Pools of a BMP at the Drosophila Neuromuscular Junction. Dev Cell. doi: 10.1016/j.devcel.2014.10.006
[54]  Kim MJ, O'Connor MB (2014) Anterograde Activin signaling regulates postsynaptic membrane potential and GluRIIA/B abundance at the Drosophila neuromuscular junction. PLoS One 9: e107443. doi: 10.1371/journal.pone.0107443. pmid:25255438
[55]  Davis GW, DiAntonio A, Petersen SA, Goodman CS (1998) Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release in Drosophila. Neuron 20: 305–315. pmid:9491991 doi: 10.1016/s0896-6273(00)80458-4
[56]  Rasse TM, Fouquet W, Schmid A, Kittel RJ, Mertel S, et al. (2005) Glutamate receptor dynamics organizing synapse formation in vivo. Nat Neurosci 8: 898–905. pmid:16136672 doi: 10.1038/nn1484
[57]  Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455: 903–911. doi: 10.1038/nature07456. pmid:18923512
[58]  Owald D, Khorramshahi O, Gupta VK, Banovic D, Depner H, et al. (2012) Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly. Nat Neurosci 15: 1219–1226. doi: 10.1038/nn.3183. pmid:22864612
[59]  Banovic D, Khorramshahi O, Owald D, Wichmann C, Riedt T, et al. (2010) Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. Neuron 66: 724–738. doi: 10.1016/j.neuron.2010.05.020. pmid:20547130
[60]  Li J, Ashley J, Budnik V, Bhat MA (2007) Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55: 741–755. pmid:17785181 doi: 10.1016/j.neuron.2007.08.002
[61]  Zeng YA, Rahnama M, Wang S, Sosu-Sedzorme W, Verheyen EM (2007) Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation. Development 134: 2061–2071. pmid:17507407 doi: 10.1242/dev.02853
[62]  Merino C, Penney J, Gonzalez M, Tsurudome K, Moujahidine M, et al. (2009) Nemo kinase interacts with Mad to coordinate synaptic growth at the Drosophila neuromuscular junction. J Cell Biol 185: 713–725. doi: 10.1083/jcb.200809127. pmid:19451277
[63]  Goold CP, Davis GW (2007) The BMP ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control. Neuron 56: 109–123. pmid:17920019 doi: 10.1016/j.neuron.2007.08.006
[64]  Nahm M, Kim S, Paik SK, Lee M, Lee S, et al. (2010) dCIP4 (Drosophila Cdc42-interacting protein 4) restrains synaptic growth by inhibiting the secretion of the retrograde Glass bottom boat signal. J Neurosci 30: 8138–8150. doi: 10.1523/JNEUROSCI.0256-10.2010. pmid:20554864
[65]  Dani N, Nahm M, Lee S, Broadie K (2012) A Targeted Glycan-Related Gene Screen Reveals Heparan Sulfate Proteoglycan Sulfation Regulates WNT and BMP Trans-Synaptic Signaling. PLoS Genet 8: e1003031. doi: 10.1371/journal.pgen.1003031. pmid:23144627
[66]  Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG, et al. (2003) Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol 162: 1089–1098. pmid:12963706 doi: 10.1083/jcb.200212060
[67]  Lee-Hoeflich ST, Causing CG, Podkowa M, Zhao X, Wrana JL, et al. (2004) Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO J 23: 4792–4801. pmid:15538389 doi: 10.1038/sj.emboj.7600418
[68]  Tucker JA, Mintzer KA, Mullins MC (2008) The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 14: 108–119. doi: 10.1016/j.devcel.2007.11.004. pmid:18194657
[69]  Guzman A, Zelman-Femiak M, Boergermann JH, Paschkowsky S, Kreuzaler PA, et al. (2012) SMAD versus non-SMAD signaling is determined by lateral mobility of bone morphogenetic protein (BMP) receptors. J Biol Chem 287: 39492–39504. doi: 10.1074/jbc.M112.387639. pmid:22961979
[70]  Marom B, Heining E, Knaus P, Henis YI (2011) Formation of stable homomeric and transient heteromeric bone morphogenetic protein (BMP) receptor complexes regulates Smad protein signaling. J Biol Chem 286: 19287–19296. doi: 10.1074/jbc.M110.210377. pmid:21471205
[71]  Nguyen M, Parker L, Arora K (2000) Identification of maverick, a novel member of the TGF-beta superfamily in Drosophila. Mech Dev 95: 201–206. pmid:10906462 doi: 10.1016/s0925-4773(00)00338-5
[72]  Lo PC, Frasch M (1999) Sequence and expression of myoglianin, a novel Drosophila gene of the TGF-beta superfamily. Mech Dev 86: 171–175. pmid:10446278 doi: 10.1016/s0925-4773(99)00108-2
[73]  Gesualdi SC, Haerry TE (2007) Distinct signaling of Drosophila Activin/TGF-beta family members. Fly (Austin) 1: 212–221. doi: 10.4161/fly.5116
[74]  Rejon CA, Hancock MA, Li YN, Thompson TB, Hebert TE, et al. (2013) Activins bind and signal via bone morphogenetic protein receptor type II (BMPR2) in immortalized gonadotrope-like cells. Cell Signal 25: 2717–2726. doi: 10.1016/j.cellsig.2013.09.002. pmid:24018044
[75]  Serpe M, O'Connor MB (2006) The metalloprotease tolloid-related and its TGF-beta-like substrate Dawdle regulate Drosophila motoneuron axon guidance. Development 133: 4969–4979. pmid:17119021 doi: 10.1242/dev.02711
[76]  Liu QR, Hattar S, Endo S, MacPhee K, Zhang H, et al. (1997) A developmental gene (Tolloid/BMP-1) is regulated in Aplysia neurons by treatments that induce long-term sensitization. J Neurosci 17: 755–764. pmid:8987797
[77]  Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462: 745–756. doi: 10.1038/nature08624. pmid:19946266
[78]  Allendorph GP, Vale WW, Choe S (2006) Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc Natl Acad Sci U S A 103: 7643–7648. pmid:16672363 doi: 10.1073/pnas.0602558103
[79]  Weber D, Kotzsch A, Nickel J, Harth S, Seher A, et al. (2007) A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. BMC Struct Biol 7: 6. pmid:17295905
[80]  Lee HX, Mendes FA, Plouhinec JL, De Robertis EM (2009) Enzymatic regulation of pattern: BMP4 binds CUB domains of Tolloids and inhibits proteinase activity. Genes Dev 23: 2551–2562. doi: 10.1101/gad.1839309. pmid:19884260
[81]  Meyerson JR, Kumar J, Chittori S, Rao P, Pierson J, et al. (2014) Structural mechanism of glutamate receptor activation and desensitization. Nature 514: 328–334. doi: 10.1038/nature13603. pmid:25119039
[82]  Reiff DF, Thiel PR, Schuster CM (2002) Differential regulation of active zone density during long-term strengthening of Drosophila neuromuscular junctions. J Neurosci 22: 9399–9409. pmid:12417665
[83]  Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361: 1545–1564. pmid:16939974 doi: 10.1098/rstb.2006.1894
[84]  Thoenen H, Barde YA (1980) Physiology of nerve growth factor. Physiol Rev 60: 1284–1335. pmid:6159658
[85]  Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14: 7–23. doi: 10.1038/nrn3379. pmid:23254191
[86]  Zhu B, Pennack JA, McQuilton P, Forero MG, Mizuguchi K, et al. (2008) Drosophila neurotrophins reveal a common mechanism for nervous system formation. PLoS Biol 6: e284. doi: 10.1371/journal.pbio.0060284. pmid:19018662
[87]  McIlroy G, Foldi I, Aurikko J, Wentzell JS, Lim MA, et al. (2013) Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS. Nat Neurosci 16: 1248–1256. doi: 10.1038/nn.3474. pmid:23892553
[88]  Ballard SL, Miller DL, Ganetzky B (2014) Retrograde neurotrophin signaling through Tollo regulates synaptic growth in Drosophila. J Cell Biol 204: 1157–1172. doi: 10.1083/jcb.201308115. pmid:24662564
[89]  Shen W, Finnegan S, Lein P, Sullivan S, Slaughter M, et al. (2004) Bone morphogenetic proteins regulate ionotropic glutamate receptors in human retina. Eur J Neurosci 20: 2031–2037. pmid:15450082 doi: 10.1111/j.1460-9568.2004.03681.x
[90]  Sun M, Thomas MJ, Herder R, Bofenkamp ML, Selleck SB, et al. (2007) Presynaptic contributions of chordin to hippocampal plasticity and spatial learning. J Neurosci 27: 7740–7750. pmid:17634368 doi: 10.1523/jneurosci.1604-07.2007
[91]  Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139: 1347–1358. pmid:7768443
[92]  Raftery LA, Twombly V, Wharton K, Gelbart WM (1995) Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139: 241–254. pmid:7705627
[93]  Wharton KA, Cook JM, Torres-Schumann S, de Castro K, Borod E, et al. (1999) Genetic analysis of the bone morphogenetic protein-related gene, gbb, identifies multiple requirements during Drosophila development. Genetics 152: 629–640. pmid:10353905
[94]  Twombly V, Bangi E, Le V, Malnic B, Singer MA, et al. (2009) Functional analysis of saxophone, the Drosophila gene encoding the BMP type I receptor ortholog of human ALK1/ACVRL1 and ACVR1/ALK2. Genetics 183: 563–579, 561SI-568SI. doi: 10.1534/genetics.109.105585. pmid:19620392
[95]  Coyle IP, Koh YH, Lee WC, Slind J, Fergestad T, et al. (2004) Nervous wreck, an SH3 adaptor protein that interacts with Wsp, regulates synaptic growth in Drosophila. Neuron 41: 521–534. pmid:14980202 doi: 10.1016/s0896-6273(04)00016-9
[96]  Mozer BA, Sandstrom DJ (2012) Drosophila neuroligin 1 regulates synaptic growth and function in response to activity and phosphoinositide-3-kinase. Mol Cell Neurosci 51: 89–100. doi: 10.1016/j.mcn.2012.08.010. pmid:22954894
[97]  Budnik V, Koh YH, Guan B, Hartmann B, Hough C, et al. (1996) Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron 17: 627–640. pmid:8893021 doi: 10.1016/s0896-6273(00)80196-8
[98]  Stewart BA, Atwood HL, Renger JJ, Wang J, Wu CF (1994) Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J Comp Physiol A 175: 179–191. pmid:8071894 doi: 10.1007/bf00215114
[99]  Budnik V, Gorczyca M, Prokop A (2006) Selected methods for the anatomical study of Drosophila embryonic and larval neuromuscular junctions. Int Rev Neurobiol 75: 323–365. pmid:17137935 doi: 10.1016/s0074-7742(06)75015-2
[100]  Persson U, Izumi H, Souchelnytskyi S, Itoh S, Grimsby S, et al. (1998) The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation. FEBS Lett 434: 83–87. pmid:9738456 doi: 10.1016/s0014-5793(98)00954-5
[101]  Gho M (1994) Voltage-clamp analysis of gap junctions between embryonic muscles in Drosophila. J Physiol 481 (Pt 2): 371–383. pmid:7537815 doi: 10.1113/jphysiol.1994.sp020446
[102]  Zhang B, Koh YH, Beckstead RB, Budnik V, Ganetzky B, et al. (1998) Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21: 1465–1475. pmid:9883738 doi: 10.1016/s0896-6273(00)80664-9

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133