全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean

DOI: 10.1371/journal.pgen.1005818

Full-Text   Cite this paper   Add to My Lib

Abstract:

It has been demonstrated that Terminal Flowering 1 (TFL1) in Arabidopsis and its functional orthologs in other plants specify indeterminate stem growth through their specific expression that represses floral identity genes in shoot apical meristems (SAMs), and that the loss-of-function mutations at these functional counterparts result in the transition of SAMs from the vegetative to reproductive state that is essential for initiation of terminal flowering and thus formation of determinate stems. However, little is known regarding how semi-determinate stems, which produce terminal racemes similar to those observed in determinate plants, are specified in any flowering plants. Here we show that semi-determinacy in soybean is modulated by transcriptional repression of Dt1, the functional ortholog of TFL1, in SAMs. Such repression is fulfilled by recently enabled spatiotemporal expression of Dt2, an ancestral form of the APETALA1/FRUITFULL orthologs, which encodes a MADS-box factor directly binding to the regulatory sequence of Dt1. In addition, Dt2 triggers co-expression of the putative SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (GmSOC1) in SAMs, where GmSOC1 interacts with Dt2, and also directly binds to the Dt1 regulatory sequence. Heterologous expression of Dt2 and Dt1 in determinate (tfl1) Arabidopsis mutants enables creation of semi-determinacy, but the same forms of the two genes in the tfl1 and soc1 background produce indeterminate stems, suggesting that Dt2 and SOC1 both are essential for transcriptional repression of Dt1. Nevertheless, the expression of Dt2 is unable to repress TFL1 in Arabidopsis, further demonstrating the evolutionary novelty of the regulatory mechanism underlying stem growth in soybean.

References

[1]  Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997;275(5296):80–3. Epub 1997/01/03. pmid:8974397. doi: 10.1126/science.275.5296.80
[2]  Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet. 2008;40(12):1489–92. Epub 2008/11/11. doi: 10.1038/ng.253 pmid:18997783.
[3]  Wong CE, Singh MB, Bhalla PL. Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant J. 2009;57(5):832–45. Epub 2008/11/05. doi: 10.1111/j.1365-313X.2008.03730.x pmid:18980639.
[4]  Liu C, Thong ZH, Yu H. Coming into bloom: the specification of floral meristems. Development. 2009;136(20):3379–91. doi: 10.1242/dev.033076 pmid:19783733.
[5]  Yant L, Mathieu J, Schmid M. Just say no: floral repressors help Arabidopsis bide the time. Curr Opin Plant Biol. 2009;12(5):580–6. doi: 10.1016/j.pbi.2009.07.006 pmid:19695946.
[6]  Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992;69(5):843–59. Epub 1992/05/29. 0092-8674(92)90295-N. pmid:1350515. doi: 10.1016/0092-8674(92)90295-n
[7]  Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992;360(6401):273–7. Epub 1992/11/19. doi: 10.1038/360273a0 pmid:1359429.
[8]  Gustafson-Brown C, Savidge B, Yanofsky MF. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell. 1994;76(1):131–43. doi: 10.1016/0092-8674(94)90178-3 pmid:7506995.
[9]  Shannon S, Meeks-Wagner DR. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell. 1991;3(9):877–92. Epub 1991/09/01. doi: 10.1105/tpc.3.9.877 pmid:12324621.
[10]  Alvarez J, Guli CL, Yu X- H, Smyth DR. terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 1992;2(1):103–16. doi: 10.1111/j.1365-313X.1992.00103.x.
[11]  Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell. 1999;11(6):1007–18. pmid:10368173. doi: 10.2307/3870794
[12]  Ratcliffe OJ, Bradley DJ, Coen ES. Separation of shoot and floral identity in Arabidopsis. Development. 1999;126(6):1109–20. Epub 1999/02/18. pmid:10021331.
[13]  Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, et al. Orchestration of floral initiation by APETALA1. Science. 2010;328(5974):85–9. doi: 10.1126/science.1185244 pmid:20360106.
[14]  Wagner D, Sablowski RWM, Meyerowitz EM. Transcriptional activation of APETALA1 by LEAFY. Science. 1999;285(5427):582–4. doi: 10.1126/science.285.5427.582 pmid:10417387.
[15]  Kaufmann K, Muino JM, Osteras M, Farinelli L, Krajewski P, Angenent GC. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nature protocols. 2010;5(3):457–72. Epub 2010/03/06. doi: 10.1038/nprot.2009.244 pmid:20203663.
[16]  Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M, Wu MF, et al. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell. 2011;20(4):430–43. doi: 10.1016/j.devcel.2011.03.019 pmid:21497757.
[17]  Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, et al. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA. 2010;107(19):8563–8. Epub 2010/04/28. doi: 10.1073/pnas.1000088107 pmid:20421496.
[18]  Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, et al. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 2010;153(1):198–210. doi: 10.1104/pp.109.150607 pmid:20219831.
[19]  Repinski SL, Kwak M, Gepts P. The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet. 2012;124(8):1539–47. doi: 10.1007/s00122-012-1808-8 pmid:22331140.
[20]  Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, et al. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell. 2003;15(11):2742–54. doi: 10.1105/tpc.015701 pmid:14563931.
[21]  Elkind Y, Gurnick A, Kedar N. Genetics of semideterminate growth habit in tomato. Hortscience. 1991;26(8):1074–5.
[22]  Kim DH, Han MS, Cho HW, Jo YD, Cho MC, Kim BD. Molecular cloning of a pepper gene that is homologous to SELF-PRUNING. Mol Cells. 2006;22(1):89–96. pmid:16951555.
[23]  Bernard R. Two genes affecting stem termination in soybeans. Crop Sci. 1972;12(2):235–9. doi: 10.2135/cropsci1972.0011183x001200020028x
[24]  Gupta SC, Kapoor RK. Inheritance of growth habit in Pigeonpea. Crop Sci. 1991;31(6):1456–9. doi: 10.2135/cropsci1991.0011183x003100060012x
[25]  Hegde VS. Morphology and genetics of a new found determinate genotype in chickpea. Euphytica. 2011;182(1):35–42. doi: 10.1007/s10681-011-0447-5.
[26]  Heatherly LG, Smith JR. Effect of soybean stem growth habit on height and node number after beginning bloom in the midsouthern USA. Crop Sci. 2004;44(5):1855–8. doi: 10.2135/cropsci2004.1855
[27]  Chang JF, Green DE, Shibles R. Yield and agronomic performance of semi-determinate and indeterminate soybean stem types. Crop Sci. 1982;22(1):97–101. doi: 10.2135/cropsci1982.0011183x002200010022x
[28]  Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, et al. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development. 1998;125(11):1979–89. pmid:9570763.
[29]  Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, et al. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell. 2001;13(12):2687–702. pmid:11752381. doi: 10.2307/3871528
[30]  Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, et al. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genomics. 2002;266(5):821–6. doi: 10.1007/s00438-001-0599-4 pmid:11810256.
[31]  Berbel A, Ferrandiz C, Hecht V, Dalmais M, Lund OS, Sussmilch FC, et al. VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nat Commun. 2012;3:797. doi: 10.1038/ncomms1801 pmid:22531182.
[32]  Ping JQ, Liu YF, Sun LJ, Zhao MX, Li YH, She MY, et al. Dt2 is a Gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. Plant Cell. 2014;26(7):2831–42. doi: 10.1105/tpc.114.126938 pmid:25005919.
[33]  Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR. Control of flower development in Arabidopsis thaliana by Apetala1 and interacting Genes. Development. 1993;119(3):721–43.
[34]  Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development. 1998;125(8):1509–17. Epub 1998/06/20. pmid:9502732.
[35]  Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development. 2000;127(4):725–34. Epub 2000/01/29. pmid:10648231.
[36]  Sablowski RWM, Meyerowitz EM. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell. 1998;92(1):93–103. doi: 10.1016/S0092-8674(00)80902-2 pmid:9489703.
[37]  Schwarzsommer Z, Huijser P, Nacken W, Saedler H, Sommer H. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science. 1990;250(4983):931–6. doi: 10.1126/science.250.4983.931 pmid:17746916.
[38]  Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–83. doi: 10.1038/nature08670 pmid:20075913.
[39]  Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, et al. Identification of four soybean reference genes for gene expression normalization. Plant Genome. 2008;1(1):44–54. doi: 10.3835/plantgenome2008.02.0091 pmid:22029603.
[40]  Krizek BA, Meyerowitz EM. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development. 1996;122(1):11–22. pmid:8565821.
[41]  Davies B, Egea-Cortines M, de Andrade Silva E, Saedler H, Sommer H. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 1996;15(16):4330–43. pmid:8861961.
[42]  Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature. 2001;409(6819):525–9. doi: 10.1038/35054083 pmid:11206550.
[43]  Smaczniak C, Immink RG, Muino JM, Blanvillain R, Busscher M, Busscher-Lange J, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci USA. 2012;109(5):1560–5. Epub 2012/01/13. doi: 10.1073/pnas.1112871109 pmid:22238427.
[44]  Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, et al. Constans activates suppressor of overexpression of constans 1 through Flowering Locus T to promote flowering in Arabidopsis. Plant Physiol. 2005;139(2):770–8. pmid:16183837. doi: 10.1104/pp.105.066928
[45]  Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot. 2010;61(9):2247–54. doi: 10.1093/Jxb/Erq098 pmid:20413527.
[46]  Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256–61. pmid:10421366.
[47]  Poethig RS. The past, present, and future of vegetative phase change. Plant Physiol. 2010;154(2):541–4. doi: 10.1104/pp.110.161620 pmid:20921181.
[48]  Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012;13(9):627–39. doi: 10.1038/nrg3291 pmid:22898651.
[49]  Liu C, Teo ZW, Bi Y, Song S, Xi W, Yang X, et al. A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Dev Cell. 2013;24(6):612–22. doi: 10.1016/j.devcel.2013.02.013 pmid:23537632.
[50]  Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, et al. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng. 2007;104(1):34–41. Epub 2007/08/19. doi: 10.1263/jbb.104.34 pmid:17697981.
[51]  Mangeon A, Bell EM, Lin WC, Jablonska B, Springer PS. Misregulation of the LOB domain gene DDA1 suggests possible functions in auxin signaling and photomorphogenesis. Journal of experimental botany. 2011;62(1):221–33. Epub 2010/08/28. doi: 10.1093/jxb/erq259 pmid:20797997.
[52]  Fiil BK, Qiu JL, Petersen K, Petersen M, Mundy J. Coimmunoprecipitation (co-IP) of nuclear proteins and chromatin immunoprecipitation (ChIP) from Arabidopsis. CSH protocols. 2008;2008:pdb prot5049. Epub 2008/01/01. doi: 10.1101/pdb.prot5049 pmid:21356918.
[53]  Saleh A, Alvarez-Venegas R, Avramova Z. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nature protocols. 2008;3(6):1018–25. Epub 2008/06/10. doi: 10.1038/nprot.2008.66 pmid:18536649.
[54]  Blazquez M. Quantitative GUS activity assay in intact plant tissue. CSH Protoc. 2007;2007:pdb prot4688. Epub 2007/01/01. doi: 10.1101/pdb.prot4688 pmid:21357023.
[55]  Tian G, Lu Q, Zhang L, Kohalmi SE, Cui Y. Detection of protein interactions in plant using a gateway compatible bimolecular fluorescence complementation (BiFC) system. J Vis Exp. 2011;(55). doi: 10.3791/3473 pmid:21947026.
[56]  Hanano S, Goto K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell. 2011;23(9):3172–84. doi: 10.1105/tpc.111.088641 pmid:21890645.
[57]  Deblock M, Debrouwer D. RNA-RNA in-situ hybridization using digoxigenin-labeled probes—the use of high-molecular-weight polyvinyl-alcohol in the alkaline-phosphatase indoxyl-nitroblue tetrazolium reaction. Anal Biochem. 1993;215(1):86–9. doi: 10.1006/abio.1993.1558 pmid:7507651.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413