全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Positioning  2016 

Improved Between-Satellite Single-Difference Precise Point Positioning Model Using Triple GNSS Constellations: GPS, Galileo, and BeiDou

DOI: 10.4236/pos.2016.72006, PP. 63-74

Keywords: PPP, BSSD, GPS, Galileo, BeiDou

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou. Our model is based on between-satellite single-difference (BSSD) linear combination, which cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. The reference satellite can be selected from any satellite system GPS, Galileo, and BeiDou when forming BSSD linear combinations. Natural Resources Canada’s GPS Pace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets at four IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the IGS-MGEX network are used to correct both of the GPS and Galileo measurements. It is shown that using the BSSD linear combinations improves the precision of the estimated parameters by about 25% compared with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for both BSSD scenarios, which represent about 50% improvement in comparison with the GPS-only PPP solution.

References

[1]  Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M. and Webb, F.H. (1997) Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. Journal of Geophysical Research, 102, 5005-5017.
http://dx.doi.org/10.1029/96JB03860
[2]  Kouba, J. and Heroux, P. (2001) Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions, 5, 12-28.
http://dx.doi.org/10.1007/PL00012883
[3]  Colombo, O.L., Sutter, A.W. and Evans, A.G. (2004) Evaluation of Precise, Kinematic GPS Point Positioning. ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Septeber 2004, Long Beach, 1423-1430.
[4]  Ge, M., Gendt, G., Rothacher, M., Shi, C. and Liu, J. (2008) Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations. Journal of Geodesy, 82, 401.
http://dx.doi.org/10.1007/s00190-007-0208-3
[5]  Collins, P., Bisnath, S., Lahaye, F. and Héroux, P. (2010) Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing. Navigation, 57, 123-135.
http://dx.doi.org/10.1002/j.2161-4296.2010.tb01772.x
[6]  Afifi, A. and El-Rabbany, A. (2014) Improved Model for Precise Point Positioning with Dual Frequency GPS/Galileo Observables. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2014 ISPRS Technical Commission II Symposium, Vol. XL-2, 6-8 October 2014, Toronto, 173-177.
[7]  Hofmann-Wellenhof, B., Lichtenegger, H. and Wasle, E. (2008) GNSS Global Navigation Satellite Systems; GPS, Glonass, Galileo & More. Springer, Wien, New York, 501.
[8]  Leick, A. (2004) GPS Satellite Surveying. 3rd Edition, John Wiley and Sons, Hoboken.
[9]  Montenbruck, O., Steigenberger, P., Khachikyan, R., Weber, G., Langley, R.B., Mervart, L. and Hugentobler, U. (2014) IGS-MGEX: Preparing the Ground for Multi-Constellation GNSS Science. Inside GNSS, 9, 42-49.
[10]  Tegedor, J., Liu, X., de Jong, K., Goode, M., Ovstedal, O. and Vigen, E. (2014) Estimation of Galileo Uncalibrated Hardware Delays for Ambiguity-Fixed Precise Point Positioning. Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, September 2014, 2346-2353.
[11]  Hopfield, H.S. (1972) Tropospheric Refraction Effects on Satellite Range Measurements. APL Technical Digest, 11, 11-19.
[12]  Kouba, J. (2009) A Guide to Using International GNSS Service (IGS) Products.
http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf
[13]  Afifi, A. and El-Rabbany, A. (2015) An Innovative Dual Frequency PPP Model for Combined GPS/Galileo Observations. Journal of Applied Geodesy, 9, 27-34.
http://dx.doi.org/10.1515/jag-2014-0009
[14]  Boehm, J. and Schuh, H. (2004) Vienna Mapping Functions in VLBI Analyses. Geophysical Research Letters, 31, L01603 01601-01604.
http://dx.doi.org/10.1029/2003GL018984
[15]  Bos, M.S. and Scherneck, H.-G. (2011) Ocean Tide Loading Provider.
http://holt.oso.chalmers.se/loading/
[16]  IERS (2010) International Earth Rotation and Reference System Services Conventions (2010). IERS Technical Note 36.
http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html/
[17]  Wu, J.T., Wu, S.C., Hajj, G.A., Bertiger, W.I. and Lichten, S.M. (1993) Effects of Antenna Orientation on GPS Carrier Phase. Manuscripta Geodaetica, 18, 91-98.
[18]  Kaplan, E. and Heagarty, C. (2006) Understanding GPS Principles and Applications. Artech House Inc., 703.
[19]  Dow, J.M., Neilan, R.E. and Rizos, C. (2009) The International GNSS Service in a Changing Landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83, 191-198.
http://dx.doi.org/10.1007/s00190-008-0300-3
[20]  Paziewski, J. and Wielgosz, P. (2014) Assessment of GPS + Galileo and Multi-Frequency Galileo Single-Epoch Precise Positioning with Network Corrections. GPS Solutions, 18, 571-579.
[21]  Vanicek, P. and Krakiwsky, E.J. (1986) Geodesy: The Concepts. 2nd Edition, North-Holland, Amsterdam.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133