全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Human CD4- CD8- Invariant Natural Killer T Cells Promote IgG Secretion from B Cells Stimulated by Cross-Linking of Their Antigen Receptors

DOI: 10.4236/wjv.2016.62005, PP. 34-41

Keywords: Invariant Natural Killer T Cells, TI-2 Antigen, B Cells, IgM, IgG

Full-Text   Cite this paper   Add to My Lib

Abstract:

Immunoglobulin (Ig) M production can be induced by the interaction of thymus-independent type-2 (TI-2) antigen (Ag) with B cell Ag receptors (BCRs) without the involvement of conventional T cells; for IgG production through the same process, however, a second signal is required. Previous studies have reported that invariant natural killer T (iNKT) cells may be responsible for the second signal involved in IgG production. In the present study, we addressed whether human iNKT cells could participate in the production of Ig against TI-2 Ag in vitro. Two major distinct subsets of human iNKT cells, CD4+ CD8β- (CD4) and CD4- CD8β- [double negative (DN)] cells, were generated from peripheral blood monocytes from a healthy volunteer. BCR engagement, triggered by anti-IgM antibody stimulation, examined here as a model of BCR engagement triggered by TI-2 Ag, induced abundant IgM production by B cells. Both CD4 and DN iNKT cells reduced IgM production and conversely enhanced IgG production in a dose-dependent manner. In addition, IgG production by CD19+CD27- (na?ve) and CD19+CD27+ (memory) B cells was predominantly promoted by DNiNKT cells rather than CD4 iNKT cells; nevertheless, IgM production by both B cell subsets was similarly reduced by either subset of iNKT cells. These results suggest that the DN iNKT subsets may preferentially promote Ig class switching by B cells upon stimulation with TI-2 Ag.

References

[1]  De Velasco, E.A., Verheul, A.F., Verhoef, J. and Snippe, H. (1995) Streptococcus pneumoniae: Virulence Factors, Pathogenesis, and Vaccines. Microbiology Reviews, 59, 591-603.
[2]  Vitharsson, G., Jónsdóttir, I., Jónsson, S. and Valdimarsson, H. (1994) Opsonization and Antibodies to Apsular and Cell Wall Polysaccharides of Streptococcus pneumoniae. The Journal of Infectious Diseases, 170, 592-599.
http://dx.doi.org/10.1093/infdis/170.3.592
[3]  Hallström, T. and Riesbeck, K. (2010) Haemophilus influenzae and the Complement System. Trends in Microbiology, 18, 258-265.
http://dx.doi.org/10.1016/j.tim.2010.03.007
[4]  Miyasaka, T., Akahori, Y., Toyama, M., Miyamura, N., Ishii, K., Saijo, S., Iwakura, Y., Kinjo, Y., Miyazaki, Y., Oishi, K. and Kawakami K. (2013) Dectin-2-Dependent NKT Cell Activation and Serotype-Specific Antibody Production in Mice Immunized with Pneumococcal Polysaccharide Vaccine. PLoS One, 8, e78611.
http://dx.doi.org/10.1371/journal.pone.0078611
[5]  Miyasaka, T., Aoyagi, T., Uchiyama, B., Oishi, K., Nakayama, T., Kinjo, Y., Miyazaki, Y., Kunishima, H., Hirakata, Y., Kaku, M. and Kawakami, K. (2012) A Possible Relationship of Natural Killer T Cells with Humoral Immune Response to 23-Valent Pneumococcal Polysaccharide Vaccine in Clinical Settings. Vaccine, 30, 3304-3310.
http://dx.doi.org/10.1016/j.vaccine.2012.03.007
[6]  Grabenstein, J.D. and Manoff, S.B. (2012) Pneumococcal Polysaccharide 23-Valent Vaccine: Long-Term Persistence of Circulating Antibody and Immunogenicity and Safety after Revaccination in Adults. Vaccine, 30, 4435-4444.
http://dx.doi.org/10.1016/j.vaccine.2012.04.052
[7]  Mond, J.J., Lees, A. and Snapper, C.M. (1995) T Cell-Independent Antigens Type 2. Annual Review of Immunology, 13, 655-692.
http://dx.doi.org/10.1146/annurev.iy.13.040195.003255
[8]  Snapper, C.M., Rosas, F., Moorman, M.A., Jin, L., Shanebeck, K., Klinman, D.M., Kehry, M.R., Mond, J.J. and Maliszewski, C.R. (1996) IFN-Gamma Is a Potent Inducer of Ig Secretion by Sort-Purified Murine B Cells Activated through the mIg, but not the CD40, Signaling Pathway. International Immunology, 8, 877-885.
http://dx.doi.org/10.1093/intimm/8.6.877
[9]  Vos, Q., Lees, A., Wu, Z.Q., Snapper, C.M. and Mond, J.J. (2000) B-Cell Activation by T-Cell-Independent Type 2 Antigens as an Integral Part of the Humoral Immune Response to Pathogenic Microorganisms. Immunological Reviews, 176, 154-170.
http://dx.doi.org/10.1034/j.1600-065X.2000.00607.x
[10]  Snapper, C.M., McIntyre, T.M., Mandler, R., Pecanha, L.M., Finkelman, F.D., Lees, A. and Mond, J.J. (1992) Induction of IgG3 Secretion by Interferon Gamma: A Model for T Cell-Independent Class Switching in Response to T Cell-Independent Type 2 Antigens. The Journal of Experimental Medicine, 175, 1367-1371.
http://dx.doi.org/10.1084/jem.175.5.1367
[11]  Kronenberg, M. and Gapin, L. (2002) The Unconventional Lifestyle of NKT Cells. Nature Reviews Immunology, 2, 557-568.
[12]  Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. and Van Kaer, L. (2004) NKT Cells: What’s in a Name. Nature Reviews Immunology, 4, 231-237.
http://dx.doi.org/10.1038/nri1309
[13]  Rogers, P.R., Matsumoto, A., Naidenko, O., Kronenberg, M., Mikayama, T. and Kato, S. (2004) Expansion of Human Valpha24+ NKT Cells by Repeated Stimulation with KRN7000. Journal of Immunological Methods, 285, 197-214.
http://dx.doi.org/10.1016/j.jim.2003.12.003
[14]  Van Kaer, L., Parekh, V.V. and Wu, L. (2015) The Response of CD1d-Restricted Invariant NKT Cells to Microbial Path Ogens and Their Products. Frontiers in Immunology, 6, 226.
http://dx.doi.org/10.3389/fimmu.2015.00226
[15]  O’Reilly, V., Zeng, S.G., Bricard, G., Atzberger, A., Hogan, A.E., Jackson, J., Feighery, C., Porcelli, S.A. and Doherty, D.G. (2011) Distinct and Overlapping Effect or Functions of Expanded Human CD4+, CD8α+ and CD4-CD8α- Invariant Natural Killer T Cells. PLoS One, 6, e28648.
http://dx.doi.org/10.1371/journal.pone.0028648
[16]  Kobrynski, L.J., Sousa, A.O., Nahmias, A.J. and Lee, F.K. (2005) Cutting Edge: Antibody Production to Pneumococcal Polysaccharides Requires CD1 Molecules and CD8+ T Cells. The Journal of Immunology, 174, 1787-1790.
http://dx.doi.org/10.4049/jimmunol.174.4.1787
[17]  Nakamatsu, M., Yamamoto, N., Hatta, M., Nakasone, C., Kinjo, T., Miyagi, K., Uezu, K., Nakamura, K., Nakayama, T., Taniguchi, M., Iwakura, Y., Kaku, M., Fujita, J. and Kawakami, K. (2007) Role of Interferon-Gamma in Valpha14+ Natural Killer T Cell-Mediated Host Defense against Streptococcus pneumoniae Infection in Murine Lungs. Microbes and Infection, 9 364-374.
http://dx.doi.org/10.1016/j.micinf.2006.12.003
[18]  Liu, T.Y., Uemura, Y., Suzuki, M., Narita, Y., Hirata, S., Ohyama, H., Ishihara, O. and Matsushita, S. (2008) Distinct Subsets of Human Invariant NKT Cells Differentially Regulate T Helper Responses via Dendritic Cells. European Journal of Immunology, 38, 1012-1023.
http://dx.doi.org/10.1002/eji.200737838
[19]  Moens, L., Wuyts, M., Meyts, I., De Boeck, K. and Bossuyt, X. (2008) Human Memory B Lymphocyte Subsets Fulfill Distinct Roles in the Anti-Polysaccharide and Anti-Protein Immune Response. The Journal of Immunology, 181, 5306-5312.
http://dx.doi.org/10.4049/jimmunol.181.8.5306
[20]  Galli, G., Nuti, S., Tavarini, S., Galli-Stampino, L., De Lalla, C., Casorati, G., Dellabona, P. and Abrignani, S. (2003) CD1d-Restricted Help to B Cells by Human Invariant Natural Killer T Lymphocytes. The Journal of Experimental Medicine, 197, 1051-1057.
http://dx.doi.org/10.1084/jem.20021616
[21]  Zeng, S.G., Ghnewa, Y.G., O’Reilly, V.P., Lyons, V.G., Atzberger, A., Hogan, A.E., Exley, M.A. and Doherty, D.G. (2013) Human Invariant NKT Cell Subsets Differentially Promote Differentiation, Antibody Production, and T Cell Stimulation by B Cells in Vitro. The Journal of Immunology, 191, 1666-1676.
http://dx.doi.org/10.4049/jimmunol.1202223
[22]  Lee, P.T., Benlagha, K., Teyton, L. and Bendelac, A. (2002) Distinct Functional Lineages of Human Vα24 Natural Killer T Cells. The Journal of Experimental Medicine, 195, 637-641.
http://dx.doi.org/10.1084/jem.20011908
[23]  Gumperz, J.E., Miyake, S., Yamamura, T. and Brenner, M.B. (2002) Functionally Distinct Subsets of CD1d-Restricted natural Killer T Cells Revealed by CD1d Tetramer Staining. The Journal of Experimental Medicine, 195, 625-636.
http://dx.doi.org/10.1084/jem.20011786
[24]  Thedrez, A., de Lalla, C., Allain, S., Zaccagnino, L., Sidobre, S., Garavaglia, C., Borsellino, G., Dellabona, P., Bonneville, M., Scotet, E. and Casorati, G. (2007) CD4 Engagement by CD1d Potentiates Activation of CD4+ Invariant NKT Cells. Blood, 110, 251-258.
http://dx.doi.org/10.1182/blood-2007-01-066217
[25]  Kim, C.H., Johnston, B. and Butcher, E.C. (2002) Trafficking Machinery of NKT Cells: Shared and Differential Chemokine Receptor Expression among Vα24+Vβ11+ NKT Cell Subsets with Distinct Cytokine-Producing Capacity. Blood, 100, 11-16.
http://dx.doi.org/10.1182/blood-2001-12-0196
[26]  Kim, C.H., Rott, L., Kunkel, E.J., Genovese, M.C., Andrew, D.P., Wu, L. and Butcher, E.C. (2001) Rules of Chemokine Receptor Association with T Cell Polarization in Vivo. The Journal of Clinical Investigation, 108, 1331-1339.
http://dx.doi.org/10.1172/JCI13543
[27]  Obukhanych, T.V. and Nussenzweig, M.C. (2006) T-Independent Type II Immune Responses Generate Memory B Cells. The Journal of Experimental Medicine, 203, 305-310.
http://dx.doi.org/10.1084/jem.20052036
[28]  Bai, L., Deng, S., Reboulet, R., Mathew, R., Teyton, L., Savage, P.B. and Bendelac, A. (2013) Natural Killer T (NKT)-B-Cell Interactions Promote Prolonged Antibody Responses and Long-Term Memory to Pneumococcal Capsular Polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 110, 16097-16102.
http://dx.doi.org/10.1073/pnas.1303218110
[29]  Maddur, M.S. and Bayry, J. (2015) B Cells Drive Th2 Responses by Instructing Human Dendritic Cell Maturation. OncoImmunology, 4, e1005508.
http://dx.doi.org/10.1080/2162402x.2015.1005508
[30]  Maddur, M.S., Sharma, M., Hegde, P., Stephen-Victor, E., Pulendran, B., Kaveri, S.V. and Bayry, J. (2014) Human B Cells Induce Dendritic Cell Maturation and Favour Th2 Polarization by Inducing OX-40 Ligand. Nature Communications, 9, No. 4092.
http://dx.doi.org/10.1038/ncomms5092
[31]  Zaini, J., Andarini, S., Tahara, M., Saijo, Y., Ishii, N., Kawakami, K., Taniguchi, M., Sugamura, K., Nukiwa, T. and Kikuchi, T. (2007) OX40 Ligand Expressed by DCs Costimulates NKT and CD4+ Th Cell Antitumor Immunity in Mice. The Journal of Clinical Investigation, 117, 3330-3338.
http://dx.doi.org/10.1172/JCI32693

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413