全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Molecular Mechanics and Quantum Mechanics Study of Monohydration of Nucleic Acid Bases

DOI: 10.4236/jbpc.2016.72005, PP. 49-59

Keywords: DNA Bases, Hydration, Ab Initio Calculations, Molecular Mechanics, Hydrogen Bonding

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA is the most important biological molecule and its hydration contributes essentially to the structure and functions of the double helix. We analyze the monohydration of the individual bases of nucleic acids and their methyl derivatives using methods of Molecular Mechanics (MM) with the Poltev-Malenkov (PM), AMBER and OPLS force fields, as well as ab initio Quantum Mechanics (QM) calculations at MP2/6-31G(d,p) level of theory. A comparison is made between the calculated interaction energies and the experimental enthalpies of microhydration of bases, obtained from mass spectrometry at low temperatures. Each local water-base interaction energy minimum obtained with MM corresponds to the minimum obtained with QM. General qualitative agreement was observed in the geometrical characteristics of the local minima obtained via the two groups of methods. MM minima correspond to slightly more coplanar structures than those obtained via QM methods, and the absolute MM energy values overestimate corresponding values obtained with QM. For Adenine and Thymine the QM local minima energy values are closer to those obtained by the PM potential (average of 0.72 kcal/mol) than by the AMBER force field (1.86 kcal/mol). The differences in energy between MM and QM results are more pronounced for Guanine and Cytosine, especially for minima with the water molecule forming H-bonds with two proton-acceptor centers of the base. Such minima are the deepest ones obtained via MM methods while QM calculations result in the global minima corresponding to water molecule H-bonded to one acceptor and one donor site of the base. Calculations for trimethylated bases with a water molecule corroborate the MM results. The energy profiles were obtained with some degrees of freedom of the water molecule being frozen. This data will contribute to the improvement of the molecular mechanics force fields.

References

[1]  Franklin, R.E. and Gosling, R.G. (1953) The Structure of Sodium Thymonucleate Fibres. I. The Influence of Water Content. Acta Crystallographica, 6, 673-677.
http://dx.doi.org/10.1107/S0365110X53001939
[2]  Shishkin, O.V., Gorb, L. and Leszczynski, J. (2000) Does the Hydrated Cytosine Molecule Retain the Canonical Structure? A DFT Study. The Journal of Physical Chemistry B, 104, 5357-5361.
http://dx.doi.org/10.1021/jp993144c
[3]  Shishkin, O.V., Sukhanov, O.S., Gorb, L. and Leszczynski, J. (2002) The Interaction of the Most Stable Guanine Tautomers with Water. The Structure and Properties of Monohydrates. Physical Chemistry Chemical Physics, 4, 5359- 5364.
http://dx.doi.org/10.1039/b205351a
[4]  van Mourik, T., Danilov, V.I., Gonzalez, E., Deriabina, A. and Poltev, V.I. (2007) Indication of Water Droplet Formation in Hydrated Clusters of Cytosine and Adenine: An Electronic Structure Study Using B3LYP, LMP2 and PM6. Chemical Physics Letters, 445, 303-308.
http://dx.doi.org/10.1016/j.cplett.2007.07.081
[5]  Schneider, B., Cohen, D.M., Schleifer, L., Srinivasan, A.R., Olson, W.K. and Berman, H.M. (1993) A Systematic Method for Studying the Spatial Distribution of Water Molecules around Nucleic Acid Bases. Biophysical Journal, 65, 2291.
http://dx.doi.org/10.1016/S0006-3495(93)81306-7
[6]  Schneider, B. and Berman, H.M. (1995) Hydration of the DNA Bases Is Local. Biophysical Journal, 69, 2661.
http://dx.doi.org/10.1016/S0006-3495(95)80136-0
[7]  Poltev, V.I., Grokhlina, T.I. and Malenkov, G.G. (1984) Hydration of Nucleic Acid Bases Studied Using Novel Atom- Atom Potential Functions. Journal of Biomolecular Structure and Dynamics, 2, 413-429.
http://dx.doi.org/10.1080/07391102.1984.10507576
[8]  González, E., Cedeno, F.I., Teplukhin, A.V., Malenkov, G.G. and Poltev, V.I. (2000) Refinamiento de la metodología de la simulación de la hidratación de los áícidos nucleicos. Revista Mexicana de Física, 46, 142-147.
[9]  Sukhodub, L.F. (1987) Interactions and Hydration of Nucleic Acid Bases in a Vacuum. Experimental Study. Chemical Reviews, 87, 589-606.
http://dx.doi.org/10.1021/cr00079a006
[10]  Kim, S.K., Lee, W. and Herschbach, D.R. (1996) Cluster Beam Chemistry: Hydration of Nucleic Acid Bases; Ionization Potentials of Hydrated Adenine and Thymine. The Journal of Physical Chemistry, 100, 7933-7937.
http://dx.doi.org/10.1021/jp960635d
[11]  Belau, L., Wilson, K.R., Leone, S.R. and Ahmed, M. (2007) Vacuum-Ultraviolet Photoionization Studies of the Microhydration of DNA Bases (Guanine, Cytosine, Adenine, and Thymine). The Journal of Physical Chemistry A, 111, 7562-7568.
http://dx.doi.org/10.1021/jp0705929
[12]  Chin, W., Mons, M., Piuzzi, F., Tardivel, B., Dimicoli, I., Gorb, L. and Leszczynski, J. (2004) Gas Phase Rotamers of the Nucleobase 9-Methylguanine Enol and Its Monohydrate: Optical Spectroscopy and Quantum Mechanical Calculations. The Journal of Physical Chemistry A, 108, 8237-8243.
http://dx.doi.org/10.1021/jp048492f
[13]  Liu, D., Wyttenbach, T. and Bowers, M.T. (2006) Hydration of Mononucleotides. Journal of the American Chemical Society, 128, 15155-15163.
http://dx.doi.org/10.1021/ja062418o
[14]  van Mourik, T., Benoit, D.M., Price, S.L. and Clary, D.C. (2000) Ab Initio and Diffusion Monte Carlo Study of Uracil- Water, Thymine-Water, Cytosine-Water, and Cytosine-(Water) 2. Physical Chemistry Chemical Physics, 2, 1281-1290.
http://dx.doi.org/10.1039/a909183a
[15]  González, E., Deriabina, A., Teplukhin, A., Hernández, A. and Poltev, V.I. (2003) Monte Carlo Study of Three- Dimensional Organization of Water Molecules around DNA Fragments. Theoretical Chemistry Accounts, 110, 460- 465.
http://dx.doi.org/10.1007/s00214-003-0502-y
[16]  Coutinho, K., Ludwig, V. and Canuto, S. (2004) Combined Monte Carlo and Quantum Mechanics Study of the Hydration of the Guanine-Cytosine Base Pair. Physical Review E, 69, Article ID: 061902.
http://dx.doi.org/10.1103/physreve.69.061902
[17]  Kabelác, M. and Hobza, P. (2007) Hydration and Stability of Nucleic Acid Bases and Base Pairs. Physical Chemistry Chemical Physics, 9, 903-917.
http://dx.doi.org/10.1039/B614420A
[18]  Hanus, M., Ryjácek, F., Kabelác, M., Kubar, T., Bogdan, T.V., Trygubenko, S.A. and Hobza, P. (2003) Correlated ab Initio Study of Nucleic Acid Bases and Their Tautomers in the Gas Phase, in a Microhydrated Environment and in Aqueous Solution. Guanine: Surprising Stabilization of Rare Tautomers in Aqueous Solution. Journal of the American Chemical Society, 125, 7678-7688.
http://dx.doi.org/10.1021/ja034245y
[19]  Shukla, M.K. and Leszczynski, J. (2008) Hydration-Dependent Structural Deformation of Guanine in the Electronic Singlet Excited State. The Journal of Physical Chemistry B, 112, 5139-5152.
http://dx.doi.org/10.1021/jp7100557
[20]  Crews, B., Abo-Riziq, A., Grace, L., Callahan, M., Kabelác, M., Hobza, P. and de Vries, M.S. (2005) IR-UV Double Resonance Spectroscopy of Guanine-H2O Clusters. Physical Chemistry Chemical Physics, 7, 3015-3020.
http://dx.doi.org/10.1039/b506107e
[21]  Kabelac, M., Zendlova, L., Reha, D. and Hobza, P. (2005) Potential Energy Surfaces of an Adenine-Thymine Base Pair and Its Methylated Analogue in the Presence of One and Two Water Molecules: Molecular Mechanics and Correlated ab Initio Study. The Journal of Physical Chemistry B, 109, 12206-12213.
http://dx.doi.org/10.1021/jp045970d
[22]  Hanus, M., Kabelác, M., Rejnek, J., Ryjácek, F. and Hobza, P. (2004) Correlated ab Initio Study of Nucleic Acid Bases and Their Tautomers in the Gas Phase, in a Microhydrated Environment, and in Aqueous Solution. Part 3. Adenine. The Journal of Physical Chemistry B, 108, 2087-2097.
http://dx.doi.org/10.1021/jp036090m
[23]  Trygubenko, S.A., Bogdan, T.V., Rueda, M., Orozco, M., Luque, F.J., Sponer, J., Slavícek, P. and Hobza, P. (2002) Correlated ab Initio Study of Nucleic Acid Bases and Their Tautomers in the Gas Phase, in a Microhydrated Environment and in Aqueous Solution. Part 1. Cytosine. Physical Chemistry Chemical Physics, 4, 4192-4203.
http://dx.doi.org/10.1039/B202156K
[24]  Rejnek, J., Hanus, M., Kabelác, M., Ryjácek, F. and Hobza, P. (2005) Correlated ab Initio Study of Nucleic Acid Bases and Their Tautomers in the Gas Phase, in a Microhydrated Environment and in Aqueous Solution. Part 4. Uracil and Thymine. Physical Chemistry Chemical Physics, 7, 2006-2017.
http://dx.doi.org/10.1039/B501499A
[25]  Kim, S., Wheeler, S.E. and Schaefer, H.F. (2006) Microsolvation Effects on the Electron Capturing Ability of Thymine: Thymine-Water Clusters. The Journal of Chemical Physics, 124, Article ID: 204310.
http://dx.doi.org/10.1063/1.2197828
[26]  Kim, S. and Schaefer, H.F. (2007) Microhydration of Cytosine and Its Radical Anion: Cytosine·(H2O)n (n = 1 - 5). The Journal of Chemical Physics, 126, Article ID: 064301.
http://dx.doi.org/10.1063/1.2432123
[27]  Close, D.M., Crespo-Hernández, C.E., Gorb, L. and Leszczynski, J. (2006) Influence of Microhydration on the Ionization Energy Thresholds of Thymine: Comparisons of Theoretical Calculations with Experimental Values. The Journal of Physical Chemistry A, 110, 7485-7490.
http://dx.doi.org/10.1021/jp061064k
[28]  Poltev, V.I., Malenkov, G.G., Gonzalez, E.J., Teplukhin, A.V., Rein, R., Shibata, M. and Miller, J.H. (1996) Modeling DNA Hydration: Comparison of Calculated and Experimental Hydration Properties of Nuclic Acid Bases. Journal of Biomolecular Structure and Dynamics, 13, 717-725.
http://dx.doi.org/10.1080/07391102.1996.10508884
[29]  Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society, 117, 5179-5197.
http://dx.doi.org/10.1021/ja00124a002
[30]  Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B. and Woods, R.J. (2005) The Amber Biomolecular Simulation Programs. Journal of Computational Chemistry, 26, 1668- 1688.
http://dx.doi.org/10.1002/jcc.20290
[31]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N. and Burant, J.C. (2004) Gaussian 03, Revision D. 01. Gaussian Inc., Wallingford, 26.
[32]  Boys, S.F., and Bernardi, F.D. (1970) The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Molecular Physics: An International Journal at the Interface between Chemistry and Physics, 19, 553-566.
http://dx.doi.org/10.1080/00268977000101561
[33]  Hunter, K.C., Rutledge, L.R. and Wetmore, S.D. (2005) The Hydrogen Bonding Properties of Cytosine: A Computational Study of Cytosine Complexed with Hydrogen Fluoride, Water, and Ammonia. The Journal of Physical Chemistry A, 109, 9554-9562.
http://dx.doi.org/10.1021/jp0527709

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413