全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cellulase Production from Species of Fungi and Bacteria from Agricultural Wastes and Its Utilization in Industry: A Review

DOI: 10.4236/aer.2016.42005, PP. 44-55

Keywords: Cellulase, Bacteria, Lignocellulosic Wastes, Trichoderma, Solid State Fermentation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In energy deficient world, cellulases play a major role for the production of alternative energy resources utilizing lignocellulosic waste materials for bioethanol and biogas production. This study highlights fungal and bacterial strains for the production of cellulases and its industrial applications. Solid State Fermentation (SSF) is more suitable process for cellulase production as compared to submerge fermentation techniques. Fungal cellulosomes system for the production of cellulases is more desirable and resistant to harsh environmental conditions. Trichoderma species are considered as most suitable candidate for cellulase production and utilization in industry as compared to Aspergillus and Humicola species. However, genetically modified strains of Aspergillus have capability to produce cellulase in relatively higher amount. Bacterial cellulase are more resistant to alkaline and thermophile conditions and good candidate in laundries. Cellulases are used in variety of industries such as textile, detergents and laundries, food industry, paper and pulp industry and biofuel production. Thermally stable modified strains of fungi and bacteria are good future prospect for cellulase production.

References

[1]  Chellapandi, P. and Jani, H.M. (2008) Production of Endoglucanase by the Native Strains of Strptomyces Isolates in Submerged Fermentation. Brazilian Journal of Microbiology, 39, 122-127.
http://dx.doi.org/10.1590/S1517-83822008000100026
[2]  Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F. and Xi, Y. (2008) Production and Characterization of Cellulolytic Enzymes from the Thermoacidophilic Fungal Aspergillus terreus M11 under Solid-State Cultivation of Corn Stover. Bioresource Technology, 99, 7623-7629.
http://dx.doi.org/10.1016/j.biortech.2008.02.005
[3]  Kim, S. J., Lee, C.M., Han, B.R., Kim, M.Y., Yeo, Y.S., Yoon, S. H., Koo, B.S. and Jun, H.K. (2008) Characterization of a Gene Encoding Cellulase from Uncultured Soil Bacteria. FEMS Microbiology Letters, 282, 44-51. http://dx.doi.org/10.1111/j.1574-6968.2008.01097.x
[4]  Henriksson, G., Nutt, A., Henriksson, H., Pettersson, B., Ståhlberg, J., Johansson, G. and Pettersson, G. (1999) Endoglucanase 28 (Cel12A), a New Phanerochaete Chrysosporium Cellulase. European Journal of Biochemistry, 259, 88-95.
http://dx.doi.org/10.1046/j.1432-1327.1999.00011.x
[5]  Amouri, B. and Gargouri, A. (2006) Characterization of a Novel β-Glucosidase from a Stachybotrys Strain. Biochemical Engineering Journal, 32, 191-197.
http://dx.doi.org/10.1016/j.bej.2006.09.022
[6]  Amore, A., Pepe, O., Ventorino, V., Birolo, L. Giangrande, C. and Faraco, V. (2012) Cloning and Recombinant Expression of a Cellulase from the Cellulolytic Strain Streptomyces sp. G12 Isolated from Compost. Microbial Cell Factories, 11, 164.
http://dx.doi.org/10.1186/1475-2859-11-164
[7]  Pandey, A., Selvakumar, P., Soccol, C.R. and Nigam, P. (1999) Solid State Fermentation for the Production of Industrial Enzymes. Current Science, 77, 149-162.
[8]  Ali, U.F. and El-Dein, H.S. (2008) Production and Partial Purification of Cellulase Complex by Aspergillus niger and Aspergillus nidulans Grown on Water Hyacinth Blend. Journal of Applied Science Research, 4, 875-891.
[9]  Pothiraj, C., Balaji, P. and Eyini, M. (2006) Enhanced Production of Cellulases by Various Fungal Cultures in Solid State Fermentation of Cassava Waste. African Journal of Biotechnology, 5, 1882-1885.
[10]  Ramanathan, G., Banupriya, S. and Abirami, D. (2010) Production and Optimization of Cellulase from Fusarium oxysporum. Journal of Scientific and Industrial Research, 69, 454-459.
[11]  Brijwani, K. and Vadlani, P.V. (2011) Cellulolytic Enzymes Production via Solid State Fermentation: Effect of Pretreatment Methods on Physiochemical Characteristics of Substrate. Enzyme Research, 2011, Article ID: 860134.
[12]  Babitha, S., Soccol, C.R. and Pandey, A. (2006) Solid State Fermentation for the Production of Monascus Pigments from Jackfruit Seed. Bioresource Technology, 98, 1554-1560.
http://dx.doi.org/10.1016/j.biortech.2006.06.005
[13]  Graminha, E.B.N., Gonçalves, A.Z.L., Pirota, R.D.P.B., Balsalobre, M.A.A., Da Silva, R. and Gomes, E. (2008) Enzyme Production by Solid-State Fermentation: Application to Animal Nutrition. Animal Feed Science Technology, 144, 1-22.
http://dx.doi.org/10.1016/j.anifeedsci.2007.09.029
[14]  Pandey, A. (2003) Solid-State Fermentation. Biochemical Engineering Journal, 13, 81-84.
http://dx.doi.org/10.1016/S1369-703X(02)00121-3
[15]  Thurston, B., Dawson, K.A. and Strobel, H.J. (1993) Cellobiose versus Glucose Utilization by the Ruminal Bacterium Ruminococcus albus. Applied Environment Microbiology, 59, 2631-2637.
[16]  Kaushal, R., Sharma, N. and Tandon, D. (2012) Cellulase and Xylanase Production by Co-Culture of Aspergillus niger and Fusarium oxysporum Utilizing Forest Waste. Turkish Journal of Biochemistry, 37, 35-41. http://dx.doi.org/10.5505/tjb.2012.43434
[17]  Johnson, E.A., Sakojoh, M., Halliwell, G., Madia, A. and Demain, A.L. (1982) Saccharification of Complex Cellulosic Substrates by the Cellulase System from Clostridium thermocellum. Applied and Environmental Microbiology, 43, 1125-1132.
[18]  Fatma, H., El-Zaher, A. and Fadel, M. (2010) Production of Bioethanol via Enzymatic Saccharification of Rice Straw by Cellulase Produced by Trichoderma reesei under Solid State Fermentation. New York Science Journal, 3, 72-78.
[19]  Kuhad, R.C., Gupta, R. and Singh, A. (2011) Microbial Cellulases and Their Industrial Applications. Enzyme Research, 2011, Article ID: 280696.
http://dx.doi.org/10.4061/2011/280696
[20]  Oyeleke, S.B., Oyewole, O.A., Egwim, E.C., Dauda, B.E.N. and Ibeh, E.N. (2012) Cellulase and Pectinase Production Potentials of Aspergillus niger Isolated From Corn Cob. Bayero Journal of Pure and Applied Sciences, 5, 78-83. http://dx.doi.org/10.4314/bajopas.v5i1.15
[21]  Rai, P., Tiwari, S. and Gaur, R. (2012) Optimization of Process Parameters for Cellulase Production by Novel Thermotolerant Yeast. BioResources, 7, 5401-5414.
http://dx.doi.org/10.15376/biores.7.4.5401-5414
[22]  Tholudur, A., Ramirez, W.F. and McMillan, J.D. (1999) Mathematical Modeling and Optimization of Cellulase Protein Production Using Trichoderma reesei RL-P37. Biotechnology and Bioengineering, 66, 1-16.
http://dx.doi.org/10.1002/(SICI)1097-0290(1999)66:1<1::AID-BIT1>3.0.CO;2-K
[23]  Aro, N., Pakula, T. and Penttilä, M. (2005) Transcriptional Regulation of Plant Cell Wall Degradation by Filamentous Fungi. FEMS Microbiology Revolution, 29, 719-739.
http://dx.doi.org/10.1016/j.femsre.2004.11.006
[24]  Belghith, H., Ellouz-Chaabouni, S. and Gargouri, A. (2001) Stabilization of Penicillium occitanis Cellulases by Spray Drying in Presence of Maltodextrin. Enzyme and Microbial Technology, 28, 253-258.
http://dx.doi.org/10.1016/S0141-0229(00)00322-7
[25]  Reczey, K., Szengyel, Z., Eklund, R. and Zacchi, G. (1996) Cellulase Production by T. reesei. Bioresource Technology, 57, 25-30.
http://dx.doi.org/10.1016/0960-8524(96)00038-7
[26]  Heck, J.X., Hertz, P.F. and Ayub, M.A.Z. (2002) Cellulase and Xylanase Production by Isolated Amazon bacillus Strains Using Soybean Industrial Residue Based Solid-State Cultivation. Brazilian Journal of Microbiology, 33, 213- 218.
http://dx.doi.org/10.1590/S1517-83822002000300005
[27]  Romero, M.D., Aguado, J., Gonzalez, L. and Ladero, M. (1999) Cellulase Production by Neurospora crassa on Wheat Straw. Enzyme and Microbial Technology, 25, 244-250.
http://dx.doi.org/10.1016/S0141-0229(99)00035-6
[28]  Szijártó, N., Faigl, Z., Réczey, K., Mézes, M. and Bersényi, A. (2004) Cellulase Fermentation on a Novel Substrate (Waste Cardboard) and Subsequent Utilization of Home-Produced Cellulase and Commercial Amylase in a Rabbit Feeding Trial. Industrial Crops and Products, 20, 49-57.
http://dx.doi.org/10.1016/j.indcrop.2003.12.012
[29]  Shen, X. and Xia, L. (2004) Production and Immobilization of Cellobiase from Aspergillus niger ZU-07. Process Biochemistry, 39, 1363-1367.
http://dx.doi.org/10.1016/S0032-9592(03)00264-4
[30]  Adsul, M.G., Ghule, J.E., Singh, R., Shaikh, H., Bastawdea, K.B., Gokhale, D.V. and Varma, A.J. (2004) Polysaccharides from Bagasse: Applications in Cellulase and Xylanase Production. Carbohydrate Polymers, 57, 67-72. http://dx.doi.org/10.1016/j.carbpol.2004.04.001
[31]  Wen, Z., Liao, W. and Chen, S. (2005) Production of Cellulase/β-Glucosidase by the Mixed Fungi Culture Trichoderma reesei and Aspergillus phoenicis on Dairy Manure. Process Biochemistry, 40, 3087-3094.
http://dx.doi.org/10.1016/j.procbio.2005.03.044
[32]  Pandey, A. (1992) Recent Process Developments in Solid-State Fermentation. Process Biochemistry, 27, 109-117. http://dx.doi.org/10.1016/0032-9592(92)80017-W
[33]  Pandey, A., Soccol, C.R. and Mitchell, D. (2000) New Developments in Solid-State Fermentation: I-Bioprocesses and Products. Process Biochemistry, 35, 1153-1169.
http://dx.doi.org/10.1016/S0032-9592(00)00152-7
[34]  Pandey, A., Soccol, C.A., Rodriguez-Leon, J.A. and Nigam, P. (2001) Solid-State Fermentation in Biotechnology: Fundamentals and Applications. Asiatech Publishers Inc., New Delhi, 1-221.
[35]  Narra, M., Dixit, G., Divecha, J., Madamwar, D. and Shah, A.R. (2012) Production of Cellulases by Solid State Fermentation with Aspergillus terreus and Enzymatic Hydrolysis of Mild Alkali-Treated Rice Straw. Bioresource Technology, 121, 355-361.
http://dx.doi.org/10.1016/j.biortech.2012.05.140
[36]  Liang, X., Huang, Y., Hua, D., Zhang, J., Xu, H., Li, Y. and Zhang, X. (2012) Cellulase Production by Aspergillus sp. on Rice Grass (Spartina spp.) under Solid-State Fermentation. African Journal of Microbiology Research, 6, 6785- 6792.
[37]  Zhang, J., Tang, M. and Viikari, L. (2012) Xylans Inhibit Enzymatic Hydrolysis of Lignocellulosic Materials by Cellulases. Bioresource Technology, 121, 8-12.
http://dx.doi.org/10.1016/j.biortech.2012.07.010
[38]  Goshadrou, A., Karimi, K. and Taherzadeh, M.J. (2011) Bioethanol Production from Sweet Sorghum Bagasse by Mucor hiemalis. Industrial Crops and Products, 34, 1219-1225.
http://dx.doi.org/10.1016/j.indcrop.2011.04.018
[39]  Sachin, T., Vishal, G., Sandeep, C., Rohan, I., Ajinkya, K., Sachin, M. and Meena, P. (2011) Production and Characterization of Cellulase by Local Fungal Isolate of India Using Water Hyacinth as Carbon Source and Reuse of Fungal Biomass for Dye Degradation. International Journal of Engineering Science and Technology, 3, 3236-3241.
[40]  Facchini, F.D., Vici, A.C., Reis, V.R., Jorge, J.A., Terenzi, H.F., Reis, R.A. and de Moraes Polizeli, L. (2011) Production of Fibrolytic Enzymes by Aspergillus japonicus CO3 Using Agro-Industrial Residues with Potential Application as Additives in Animal Feed. Bioprocess and Biosystems Engineering, 34, 347-355.
http://dx.doi.org/10.1007/s00449-010-0477-8
[41]  Herculano, P.N., Porto, T.S., Moreira, K.A., Pinto, G.A., Souza-Motta, C.M. and Porto, A.L. (2011) Cellulase Production by Aspergillus japonicas URM5620 Using Waste from Caster Bean (Ricinus communis L.) under Solid-State Fermentation. Applied Biochemistry and Biotechnology, 165, 1057-1067.
http://dx.doi.org/10.1007/s12010-011-9321-0
[42]  Vu, V.H., Pham, T.A. and Kim, K. (2011) Improvement of Fungal Cellulase Production by Mutation and Optimization of Solid State Fermentation. Mycobiology, 39, 20-25.
http://dx.doi.org/10.4489/MYCO.2011.39.1.020
[43]  Damisa, D., Ameh, J.B. and Egbe, N.E.L. (2011) Cellulase Production by Native Aspergillus niger Obtained from Soil Environments. Fermentation Technology and Bioengineering, 1, 62-70.
[44]  Lynd, L.R., Weimer, P.J., van Zyl, W.H. and Pretorious, I.S. (2002) Microbial Cellulase Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Revolution, 66, 506-577.
http://dx.doi.org/10.1128/MMBR.66.3.506-577.2002
[45]  Poulsen, O.M. and Petersen, L.W. (1988) Growth of Cellulomonas sp. ATCC 21399 on Different Polysaccharides as Sole Carbon Source Induction of Extracellular Enzymes. Applied Microbiology and Biotechnology, 29, 480-484.
http://dx.doi.org/10.1007/BF00269072
[46]  Rajoka, M.I. and Malik, K.A. (1997) Cellulase Production by Cellulomonas biazotea Cultured in Media Containing Different Cellulosic Substrates. Bioresource Technology, 59, 21-27.
http://dx.doi.org/10.1016/S0960-8524(96)00136-8
[47]  Ng, T.K. and Zeikus, J.G. (1982) Differential Metabolism of Cellobiose and Glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. Journal of Bacteriology, 150, 1391-1399.
[48]  Hayashida, S., Otta, K. and Mo, K. (1988) Cellulases of Humicola insolens and Humicola grisea. In: Wood, W.A. and Abelson, J.N., Eds., Methods in Enzymology, Vol. 160, Academic Press, New York, 323-332.
http://dx.doi.org/10.1016/0076-6879(88)60134-0
[49]  Schülein, M. (1997) Enzymatic Properties of Cellulases from Humicola insolens. Journal of Biotechnology, 57, 71-81.
http://dx.doi.org/10.1016/S0168-1656(97)00090-4
[50]  Chaabouni, S.E., Belguith, H., Hassairi, I., M’Rad, K. and Ellouz, R. (1995) Optimization of Cellulase Production by Penicillium occitanis. Applied Microbiology and Biotechnology, 43, 267-269.
http://dx.doi.org/10.1007/BF00172822
[51]  Jørgensen, H., Eriksson, T., ö, J., Tjerneld, F. and Olsson, L. (2003) Purification and Characterization of Five Cellulases and One Xylanase from Penicillium brasilianum IBT 20888. Enzyme and Microbial Technology, 32, 851- 861.
http://dx.doi.org/10.1016/S0141-0229(03)00056-5
[52]  van-Den Broeck, H.C., De Graaff, L.H., Visser, J.V.O. and Albert, J.J. (2001) Fungal Cellulases. US Patent No. 6306635 (to Gist-Brocades BV, NL).
[53]  Ong, L.G., Abd-Aziz, S., Noraini, S., Karim, M.I. and Hassan, M.A. (2004) Enzyme Production and Profile by Aspergillus niger during Solid Substrate Fermentation Using Palm Kernel Cake as Substrate. Applied Biochemistry and Biotechnology, 118, 73-79.
http://dx.doi.org/10.1385/ABAB:118:1-3:073
[54]  Mawadza, C., Hatti-Kaul, R., Zvauya, R. and Mattiasson, B. (2000) Purification and Characterization of Cellulases Produced by Two Bacillus Strains. Journal of Biotechnology, 83, 177-187.
http://dx.doi.org/10.1016/S0168-1656(00)00305-9
[55]  Tucker, M.P., Mohagheghi, M., Grohmann, K. and Himmel, M.E. (1989) Ultra-Thermostable Cellulases from Acidothermus cellulolyticus: Comparison of Temperature Optima with Previously Reported Cellulases. Nature Biotechnology, 7, 817-820.
http://dx.doi.org/10.1038/nbt0889-817
[56]  Yamane, K., Suzuki, H. and Nisizawa, K. (1970) Purification and Properties of Extracellular and Cell-Bound Cellulase Components of Pseudomonas fluorescens var. cellulosa. Journal of Biochemistry, 67, 19-35.
[57]  Leatherwood, J.M. (1965) Cellulase from Ruminococcus albus and Mixed Rumen Microorganisms. Applied Microbiology, 13, 771-775.
[58]  Weimer, P.J. and Zeikus, J.G. (1977) Fermentation of Cellulose and Cellobiose by Clostridium thermocellum in the Absence of Methanobacterium thermoautotrophicum. Applied and Environmental Microbiology, 33, 289-297.
[59]  López-Contreras, A.M., Gabor, K., Martens, A.A., Renckens, B.A.M., Claassen, P.A.M., van der Oost, J. and de Vos, W.M. (2004) Substrate-Induced Production and Secretion of Cellulases by Clostridium acetobutylicum. Applied Environmental Microbiology, 70, 5238-5243.
http://dx.doi.org/10.1128/aem.70.9.5238-5243.2004
[60]  Hreggvidsson, G.O., Kaiste, E., Holst, O., Eggertsson, G., Palsdottir, A. and Kristjansson, A.J. (1996) An Extremely Thermostable Cellulase from the Thermophilic Eubacterium Rhodothermus marinus. Applied and Environmental Microbiology, 62, 3047-3049.
[61]  Wood, T.M. and McCrae, S.I. (1977) Cellulase from Fusarium solani: Purification and Properties of C1 Component. Carbohydrate Research, 57, 117-133.
http://dx.doi.org/10.1016/s0008-6215(00)81925-4
[62]  Takashima, S., Iikura, H., Nakamura, A., Hidaka, M., Masaki, H. and Uozumi, T. (1998) Overproduction of Recombinant Trichoderma reesei Cellulases by Aspergillus oryzae and Their Enzymatic Properties. Journal of Biotechnology, 65, 163-171.
http://dx.doi.org/10.1016/S0168-1656(98)00084-4
[63]  Ximenes, E.A., Felix, C.R. and Ulhoa, C.J. (1996) Production of Cellulases by Aspergillus fumigatus and Characterization of One β-Glucosidase. Current Microbiology, 32, 119-123.
http://dx.doi.org/10.1007/s002849900021
[64]  Khokhar, I., Haider, M.S., Mushtaq, S. and Mukhtar, I. (2012) Isolation and Screening of Highly Cellulolytic Filamentous Fungi. Journal of Applied Sciences and Environmental Management, 16, 223-226.
[65]  Kwon, K.S., Kang, H.G. and Hah, Y.C. (1992) Purification and Characterization of Two Extracellular Beta-Glucosi- dases from Aspergillus nidulans. FEMS Microbiology Letters, 76, 149-153.
[66]  Miettinen-Oinonen, A., Londesborough, J., Joutsjoki, V., Lantto, R. and Vehmaanpera, J. (2004) Three Cellulases from Melanocarpus albomyces for Textile Treatment at Neutral pH. Enzyme and Microbial Technology, 34, 332-341.
http://dx.doi.org/10.1016/j.enzmictec.2003.11.011
[67]  Takashima, S., Nakamura, A., Masaki, H. and Uozumi, T. (1966) Purification and Characterization of Cellulases from Humicola grisea. Bioscience, Biotechnology, and Biochemistry, 60, 77-82.
http://dx.doi.org/10.1271/bbb.60.77
[68]  Saloheimo, M., Lehtovaara, P., Penttilä, M., Teeri, T.T., Ståhlberg, J., Johansson, G., Pettersson, G., Claeyssens, M., Tomme, P. and Knowles, J.K.C. (1988) EGIII, a New Endoglucanase from Trichoderma reesei: The Characterization of Both Gene and Enzyme. Gene, 63, 11-21.
http://dx.doi.org/10.1016/0378-1119(88)90541-0
[69]  Wood, T.M. and Mccrae, S.I. (1982) Purification and Some Properties of the Extracellular β-D-Glucosidase of the Cellulolytic Fungus Trichoderma koningii. Microbiology, 128, 2973-2982.
http://dx.doi.org/10.1099/00221287-128-12-2973
[70]  Galante, Y.M., De Conti, A. and Monteverdi, R. (1998) Application of Trichoderma Enzymes in Textile Industry. In: Harman, G.F. and Kubicek, C.P., Eds., Trichoderma and Gliocladium. Vol. 2, Enzymes, Biological Control and Commercial Applications, Taylor and Francis, London, 311-326.
[71]  Vargas, M. and Dussan, J. (2002) Biosafety of Native Strains of Trichoderma spp. Fungus Used for Microbial Control. Actual Biology, 24, 37-48.
[72]  Sadana, J.C., Shewale, J.G. and Deshpande, M.V. (1979) Enhanced Cellulase Production by a Mutant of Sclerotium rolfsii. Applied and Environmental Microbiology, 38, 730-733.
[73]  Fang, X., Yano, S., Inoue, H. and Sawayama, S. (2008) Strain Improvement of Acremonium cellulyticus for Cellulase Production by Mutation. Journal of Bioscience and Bioengineering, 107, 256-261.
http://dx.doi.org/10.1016/j.jbiosc.2008.11.022
[74]  Wood, T.M. (1971) The Cellulase of Fusariumsolani. Purification and Specificity of the β-(1→4)-Glucanase and the β-d-Glucosidase Components. Biochemical Journal, 121, 353-362.
http://dx.doi.org/10.1042/bj1210353
[75]  Kim, J.H., Hosobuchi, M., Kishimoto, M., Seki, T., Yoshida, T., Taguchi, H. and Ryu, D.D. (1985) Cellulase Production by a Solid State Culture System. Biotechnology and Bioenergy, 27, 1445-1450.
[76]  van Wyk, J.P.H. (1999) Saccharification of Paper Products by Cellulase from Penicillium funiculosum and Trichoderma reesei. Biomass and Bioenergy, 16, 239-242.
http://dx.doi.org/10.1016/S0961-9534(98)00079-8
[77]  Bengtsson, L., Johansson, B., Hackett, T.J., McHale, L. and McHale, A.P. (1995) Studies on the Biosorption of Uranium by Talaromyces emersonii CBS 814.70. Biomass. Applied Microbiology and Biotechnology, 42, 807-811.
http://dx.doi.org/10.1007/BF00171965
[78]  Theberge, M., Lacaze, P., Shareck, F., Morosoli, R. and Kluepfel, D. (1992) Purification and Characterization of an Endoglucanase from Streptomyces lividans 66 and DNA Sequence of the Gene. Applied and Environmental Microbiology, 58, 815-820.
[79]  de Lima, A.L.G., do Nascimento, R.P., da Silva Bon, E.P. and Coelho, R.R.R. (2005) Streptomyces drozdowiczii Cellulase Production Using Agro-Industrial By-Products and Its Potential Use in the Detergent and Textile Industries. Enzyme and Microbial Technology, 37, 272-277.
http://dx.doi.org/10.1016/j.enzmictec.2005.03.016
[80]  Nakamura, K. and Kitamura, K. (1983) Purification and Some Properties of a Cellulase Active on Crystalline Cellulose from Cellulomonas uda. Journal of Fermentation Technology, 61, 379-382.
[81]  Shen, H., Meinke, A., Tomme, P., Damude, H.G., Kwan, E., et al. (1996) Cellulomonas fimi Cellobiohydrolases. In: Saddler, J.N. and Penner, M.H., Eds., Enzymatic Degradation of Insoluble Carbohydrates, Oxford University Press, London, 174-196.
http://dx.doi.org/10.1021/bk-1995-0618.ch012
[82]  Stutzenberger, F.J. (1972) Cellulolytic Activity of Thermomonospora curvata: Nutritional Requirements for Cellulase Production. Applied Microbiology, 24, 77-82.
[83]  Wilson, D.B. (1988) Cellulases of Thermomonospora fusca. In: Abelson, J.A., et al., Methods in Enzymology: Biomass Part A: Cellulose and Hemicellulose (Biomass Vol. 160), Academic Press, San Diego, 314-323.
http://dx.doi.org/10.1016/0076-6879(88)60133-9
[84]  Xia, L. and Cen, P. (1999) Cellulase Production by Solid State Fermentation on Lignocellulosic Waste from the Xylose Industry. Process Biochemistry, 34, 909-912.
http://dx.doi.org/10.1016/S0032-9592(99)00015-1
[85]  Bhat, M.K. (2000) Cellulases and Related Enzymes in Biotechnology. Biotechnology Advances, 18, 355-383.
http://dx.doi.org/10.1016/S0734-9750(00)00041-0
[86]  Olson, L.A. and Stanley, P.M. (1991) Cellulase Compositions and Methods That Introduce Variations in Color Density into Cellulosic Fabrics, Particularly Indigo Dyed Denim. US Patent No. 5006126 (to Ecolab Inc., USA).
[87]  Olson, L.A. (1990) Treatment of Denim with Cellulase to Produce a Stone Washed Appearance. US Patent No. 4912056 (to Ecolab Inc., USA).
[88]  Cortez, J.M., Ellis, J. and Bishop, D.P. (2001) Cellulase Finishing of Woven, Cotton Fabrics in Jet, Winch Machines. Journal of Biotechnology, 89, 239-245.
http://dx.doi.org/10.1016/S0168-1656(01)00307-8
[89]  Kvietok, L.L., Trinh, T. and Hollingshead, J.A. (1995) Cellulase Fabric-Conditioning Compositions. US Patent No. 5445747.
[90]  Galante, Y.M. and Formantici, C. (2003) Enzyme Applications in Detergency and in Manufacturing Industries. Current Organic Chemistry, 7, 1399-1422.
http://dx.doi.org/10.2174/1385272033486468
[91]  Kottwitz, B. and Schambil, F. (2005) Cellulase and Cellulose Containing Detergents. US Patent No. 20050020472.
[92]  Mitchinson, C. and Wendt, D.J. (2001) Variant EGIII-Like Cellulase Compositions. US Patent No. 6268328 (to Genencore International Inc.).
[93]  Uhlig, H. (1998) Industrial Enzymes and Their Applications. John Wiley and Sons, Inc., New York, 435.
[94]  Pajunen, E. (1986) Optimal Use of β-Glucanases in Wort Production. In: EBC-Symposium on Wort Production, Monograph XI, Maffliers, France, 137-148.
[95]  Çinar, I. (2005) Effects of Cellulase and Pectinase Concentrations on the Colour Yield of Enzyme Extracted Plant Carotenoids. Process Biochemistry, 40, 945-949.
http://dx.doi.org/10.1016/j.procbio.2004.02.022
[96]  Kung Jr., L.J., Kreck, E.M., Tung, R.S., Hession, A.O., Sheperd, A.C., Cohen, M.A., Swain, H.E. and Leedle, J.A.Z. (1997) Effects of a Live Yeast Culture and Enzymes on in Vitro Ruminal Fermentation and Milk Production of Dairy Cows. Journal of Dairy Science, 80, 2045-2051.
http://dx.doi.org/10.3168/jds.S0022-0302(97)76149-6
[97]  Bedford, M.R., Morgan, A.J., Fowler, T., Clarkson, K.A., Ward, M.A., Collier, K.D. and Larenas, E.A. (2003) Enzyme Feed Additive and Animal Feed Including It. US Patent No. 6562340 (to Genencore International Inc., USA).
[98]  Akhtar, M. (1994) Biochemical Biomechanical Pulping of Aspen Wood Chips with Three Strains of Ceriporiopsis subvermispora. Holzforschung, 48, 199-202.
http://dx.doi.org/10.1515/hfsg.1994.48.3.199
[99]  Pere, J., Siika-Aho, M., Buchert, J. and Viikari, L. (1995) Effects of Purified T. reesei Cellulases on the Fibre Properties of Kraft Pulp. Tappi Journal, 78, 71-78.
[100]  Prasad, D.Y., Heitmann, J.A. and Joyce, T.W. (1992) Enzyme Deinking of Black and White Letterpress Printed Newsprint Waste. Progress in Paper Recycling, 1, 21-30.
[101]  Pere, J., Paavilainen, L., Siika-Aho, M., Cheng, Z. and Viikari, L. (1996) Potential Use of Enzymes in Drainage Control of Nonwood Pulps. Proceedings of the 3rd International Non-Wood Fibre Pulping and Paper Making Conference, 2, 421-430.
[102]  Franks, N.E., Bazewicz, S.E. and Holm, H.C. (1996) Use of Monocomponent Cellulase for Removing Inks, Coatings, and Toners from Printed Paper. US Patent No. 5525193 (to Novo Nordisk A/S, Denmark).
[103]  Buchert, J., Oksanen, T., Pere, J., Siikaaho, M., Suurnakki, A. and Viikari, L. (1998) Applications of Trichoderma reesei Enzymes in the Pulp and Paper Industry. In: Harman, G.F. and Kubicek, C.P., Eds., Trichoderma and Gliocladium. Vol. 2, Enzymes, Biological Control and Commercial Applications, Taylor and Francis, London, 343-363.
[104]  Salkinoja-Salonen, M. (1990) Method for Manufacturing Paper or Cardboard and Product Containing Cellulose. US Patent No. 4980023 (to Enso-Gutzeit Oy, Helsinki, FI).
[105]  Hsu, J.C. and Lakhani, N.N. (2002) Method of Making Absorbent Tissue from Recycled Waste Paper. US Patent No. 6413363 (to Kimberly-Clark Worldwide, Inc., Wisconsin, USA).
[106]  Sharyo, M., Sakaguchi, H., Ohishi, M., Takahashi, M., Kida, K., Tamagawa, H., Schulein, M. and Franks, N. (2002) Method of Making Sanitary Paper from Chemical Pulp Using a Single Component Cellulase That Does Not Contain Cellulose-Building Domain. US Patent No. 6468391 (to Novozymes A/S, Denmark).
[107]  Martin, J.W. (1978) Method of Removing Paper Adhered to a Surface. US Patent No. 4092175 (William Zinnsserand Co., Inc., USA).
[108]  Deshpande, V., Keskar, S., Mishra, C. and Rao, M. (1986) Direct Conversion of Cellulose/Hemicellulose to Ethanol by Neurospora crassa. Enzyme and Microbial Technology, 8, 149-152.
http://dx.doi.org/10.1016/0141-0229(86)90103-1
[109]  Kundu, S., Ghose, T.K. and Mukhopadhyay, S.N. (1983) Bioconversion of Cellulose into Ethanol by Clostridium thermocellum—Product Inhibition. Biotechnology and Bioengineering, 25, 1109-1126.
http://dx.doi.org/10.1002/bit.260250418
[110]  Rani, S.K., Swamy, M.V. and Seenayya, G. (1997) Increased Ethanol Production by Metabolic Modulation of Cellulose Fermentation in Clostridium thermocellum. Biotechnology Letters, 19, 819-823.
http://dx.doi.org/10.1023/A:1018312931542
[111]  Menedez, E., Garcia-Fraile, P. and Rivas, R. (2015) Biotechnological Applications of Bacterial Cellulases. AIMS Bioengineering, 2, 163-182.
http://dx.doi.org/10.3934/bioeng.2015.3.163
[112]  Gaur, R. and Tiwari, S. (2015) Isolation, Production, Purification and Characterization of an Organic-Solvent-Ther- mostable Alkalophilic Cellulase from Bacillus vallismortis RG-07. BMC Biotechnology, 15, 19.
http://dx.doi.org/10.1186/s12896-015-0129-9

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413