全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Memory Improvement by Yokukansankachimpihange and Atractylenolide III in the Olfactory Bulbectomized Mice

DOI: 10.4236/aad.2016.52003, PP. 35-45

Keywords: Yokukansankachimpihange, Atractylenolide III, Olfactory Bulbectomized Mice, CaMKII, BDNF

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alzheimer’s Disease (AD) shows cognitive dysfunction as core symptoms and Behavioral and Psychological Symptoms of Dementia (BPSD). Since acetylcholine nerve system derived from septum is collapsed in the AD patients, we have used Olfactory Bulbectomized (OBX) mice whose cholinergic system is largely impaired in the septum. Recently, Yokukansankachimpihange (YKH), a traditional Japanese Kampo medicine has used for BPSD in addition to improve cognitive dysfunction in AD patients. However the essential components for cognition and BPSD improvement and their mechanism are largely unknown. In present study, we found that Atractylenolide III (Aen-III), one of the components of YKH, improved cognitive deficits and depression in the OBX mice. OBX mice were orally administered with Aen-III (1.0 and 3.0 mg/kg) and YKH extracts daily for 18 days. Like YKH extracts, the Aen-III treatments ameliorated cognitive deficits and depression-like behavior observed in OBX mice. Importantly, Aen-III administration significantly restored the decreases in Ca2+/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and phosphorylation of Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and cyclic AMP response element binding protein (CREB). The restoration of CaMKII and CaMKIV signaling is closely related to the increased BDNF levels. Furthermore, ATP reduction in OBX mice was rescued by Aen-III (3.0 mg/kg) and YKH (1000 mg/kg) treatment. In summary, Aen-III as a component of YKH ameliorates cognitive dysfunctions and depression via restoring CaMKII and CaMKIV signaling.

References

[1]  Finkel, S., Silva, J.C.E., Cohen, G., Miller, S. and Sartorius, N. (1996) Behavioral and Psychological Signs and Symptom of Dementia: A Consensus Statement on Current Knowledge and Implications for Research and Treatment. International Psychogeriatrics, 8, 497-500.
http://dx.doi.org/10.1017/S1041610297003943
[2]  Giacobini, E. (2000) Cholinesterase Inhibitor Therapy Stabilizes Symptoms of Alzheimer’s Disease. Alzheimer Disease and Associated Disorders, 14, S3-S10.
http://dx.doi.org/10.1097/00002093-200000001-00002
[3]  Corwin, J., Serby, M., Conrad, P. and Rotrosen, J. (1985) Olfactory Recognition Deficit in Alzheimer’s Disease and Parkinsonian Dementia. IRCS Journal of Medical Science, 13, 260.
[4]  Koss, E. (1986) Olfactory Dysfunction in Alzheimer’s Disease. Developmental Neuropsychology, 2, 89-99.
http://dx.doi.org/10.1080/87565648609540332
[5]  Kovacs, T., Cairns, N.J. and Lantos, P.L. (2001) Olfactory Centers in Alzheimer’s Disease: Olfactory Bulb Is Involved in Early Braak’s Stage. Neuroreport, 12, 285-288.
http://dx.doi.org/10.1097/00001756-200102120-00021
[6]  Esiri, M.M. and Wilcock, G.K. (1984) The Olfactory Bulbs in Alzheimer’s Disease. Journal of Neurology, Neurosurgery & Psychiatry, 47, 56-60.
http://dx.doi.org/10.1136/jnnp.47.1.56
[7]  Han, F., Shioda, N., Moriguchi, S., Qin, Z.H. and Fukunaga, K. (2008) The Vanadium (IV) Compound Rescues Septo- Hippocampal Cholinergic Neurons from Neurodegeneration in Olfactory Bulbectomized Mice. Neuroscience, 151, 671-679.
http://dx.doi.org/10.1016/j.neuroscience.2007.11.011
[8]  Hozumi, S., Nakagawasai, O., Tan-No, K., Niijima, F., Murata, A., Arai, Y., Yasuhara, H. and Tadano, T. (2003) Characteristics of Changes in Cholinergic Function and Impairment of Learning-Memory Related Behavior Induced by Olfactory Bulbectomy. Behavioral Brain Research, 138, 9-15.
http://dx.doi.org/10.1016/S0166-4328(02)00183-3
[9]  Moriguchi, S., Han, F., Shioda, N., Yamamoto, Y., Nakajima, T., Nakagawasai, O., Tadano, T., Yeh, J.Z., Narahashi, T. and Fukunaga, K. (2009) Nefiracetam Activation of CaM Kinase II and Protein Kinase C Mediated by NMDA and Metabotropic Glutamate Receptors in Olfactory Bulbectomized Mice. Journal of Neurochemistry, 110, 170-181.
http://dx.doi.org/10.1111/j.1471-4159.2009.06122.x
[10]  Slotkin, T.A., Miller, D.B., Fumagalli, F., McCook, E.C., Zhang, J., Bissette, G. and Seidler, F.J. (1999) Modeling Geriatric Depression in Animals: Biochemical and Behavioral Effects of Olfactory Bulbectomy in Young versus Aged Rats. Journal of Pharmacology and Experimental Therapeutics, 289, 334-345.
[11]  Moriguchi, S., Tanaka, T., Tagashira, H., Narahashi, T. and Fukunaga, K. (2013) Novel Nootropic Drug Sunifiram Improves Cognitive Deficits via CaM Kinase II and Protein Kinase C Activation in Olfactory Bulbectomized Mice. Behavioural Brain Research, 242, 150-157.
http://dx.doi.org/10.1016/j.bbr.2012.12.054
[12]  Islam, M.R., Moriguchi, S., Tagashira, H. and Fukunaga, K. (2014) Rivastigmine Restores 5-HT1A Receptor Levels in the Hippocampus of Olfactory Bulbectomized Mice. Advances in Alzheimer’s Disease, 3, 128-136.
http://dx.doi.org/10.4236/aad.2014.33012
[13]  Hsu, H.Y. and Hsu, C.S. (1980) Commonly Used Chinese Herb Formulas with Illustrations. Oriental Healing Arts Institute (OHAI) Press, Long Beach, 343-346.
[14]  Furukawa, K., Tomita, N., Uematsu, D., Okahara, K., Shimada, H., Ikeda, M., Matsui, T., Kozaki, K., Fujii, M., Ogawa, T., Umegaki, H., Urakami, K., Nomura, H., Kobayashi, N., Nakanishi, A., Washimi, Y., Yonezawa, H., Takahashi, S., Kubota, M., Wakutani, Y., Ito, D., Sasaki, T., Matsubara, E., Une, K., Ishiki, A., Yahagi, Y., Shoji, M., Sato, H., Terayama, Y., Kuzuya, M., Araki, N., Kodama, M., Yamaguchi, T. and Arai, H. (2015) Randomized Double-Blind Placebo-Controlled Multicenter Trial of Yokukansan for Neuropsychiatric Symptoms in Alzheimer’s Disease. Geriatrics & Gerontology International.
[15]  Nagao, M., Takasaki, K., Nogami, A., Hirai, Y., Moriyama, H., Uchida, N., Kubota, K., Katsurabayashi, S., Mishima, K., Nishimura, R. and Iwasaki, K. (2014) Effect of Yokukansan on Sleep Disturbance in a Rat Model of Cerebrovascular Dementia. Traditional & Kampo Medicine, 1, 19-26.
[16]  Nogami, A., Takasaki, K., Kubota, K., Yamaguchi, K., Kawasaki, C., Nakamura, K., Fujikawa, R., Uchida, N., Katsurabayashi, S., Mishima, K., Nishimura, R., Fujiwara, M. and Iwasaki, K. (2013) Effect of Yokukansan on Memory Disturbance in an Animal Model of Cerebrovascular Dementia. Journal of Traditional Medicines, 30, 164-175.
[17]  Zhao, H., Ji, Z.H., Liu, C. and Yu, X.Y. (2015) Neuroprotection and Mechanisms of Atractylenolide III in Preventing Learning and Memory Impairment Induced by Chronic High-Dose Homocysteine Administration in Rats. Neuroscience, 290, 485-491.
http://dx.doi.org/10.1016/j.neuroscience.2015.01.060
[18]  Yabuki, Y., Shinoda, Y., Izumi, H., Ikuno, T., Shioda, N. and Fukunaga, K. (2015) Dehydroepiandrosterone Administration Improves Memory Deficits Following Transient Brain Ischemia through Sigma-1 Receptor Stimulation. Brain Research, 1622, 102-113.
http://dx.doi.org/10.1016/j.brainres.2015.05.006
[19]  Steru, L., Chermat, R., Thierry, B. and Simon, P. (1985) The Tail Suspension Test: A New Method for Screening Antidepressants in Mice. Psychopharmacology, 85, 367-730.
http://dx.doi.org/10.1007/BF00428203
[20]  Fukunaga, K., Goto, S. and Miyamoto, E. (1988) Immunohistochemical Localization of Ca2+/Calmodulin-Dependent Protein Kinase II in Rat Brain and Various Tissues. Journal of Neurochemistry, 51, 1070-1078.
http://dx.doi.org/10.1111/j.1471-4159.1988.tb03070.x
[21]  Prickaerts, J., Staveren, W.C., Sik, A., Markerink-van Ittersum, M., Niewöhner, U., van der Staay, F.J., Blokland, A. and de Vente, J. (2002) Effects of Two Selective Phosphodiesterase Type 5 Inhibitors, Sildenafil and Vardenafil, on Object Recognition Memory and Hippocampal Cyclic GMP Levels in the Rat. Neuroscience, 113, 351-361.
http://dx.doi.org/10.1016/S0306-4522(02)00199-9
[22]  Moriguchi, S., Sakagami, H., Yabuki, Y., Sasaki, Y., Izumi, H., Zhang, C., Han, F. and Fukunaga, K. (2014) Stimulation of Sigma-1 Receptor Ameliorates Depressive-Like Behaviors in CaMKIV Null Mice. Molecular Neurobiology, 52, 1210-1222.
http://dx.doi.org/10.1007/s12035-014-8923-2
[23]  Moriguchi, S., Shinoda, Y., Yamamoto, Y., Sasaki, Y., Miyajima, K., Tagashira, H. and Fukunaga, K. (2013) Stimulation of the Sigma-1 Receptor by DHEA Enhances Synaptic Efficacy and Neurogenesis in the Hippocampal Dentate Gyrus of Olfactory Bulbectomized Mice. PLoS ONE, 8, e60863.
http://dx.doi.org/10.1371/journal.pone.0060863
[24]  Pudell, C., Vicente, B.A., Delattre, A.M., Carabelli, B., Mori, M.A., Suchecki, D., Machado, R.B., Zanata, S.M., Visentainer, J.V., de Oliveira Santos Junior, O., Lima, M.M. and Ferraz, A.C. (2014) Fish Oil Improves Anxiety-Like, Depressive-Like and Cognitive Behaviors in Olfactory Bulbectomized Rats. European Journal of Neuroscience, 39, 266-274.
http://dx.doi.org/10.1111/ejn.12406
[25]  Rinwa, P., Kumar, A. and Garg, S. (2013) Suppression of Neuroinflammatory and Apoptotic Signaling Cascade by Curcumin Alone in Combination with Piperine in Rat Model of Olfactory Belbectomy Induced Depression. PLoS ONE, 8, e61052.
http://dx.doi.org/10.1371/journal.pone.0061052
[26]  Chen, Y.J., Zheng, H.Y., Huang, X.X., Han, S.X., Zhang, D.S., Ni, J.Z. and He, X.Y. (2015) Neuroprotective Effects of Icariin on Brain Metabolism, Mitochondrial Functions, and Cognition in Triple-Transgenic Alzheimer’s Disease Mice. CNS Neuroscience & Therapeutics, 22, 63-73.
http://dx.doi.org/10.1111/cns.12473
[27]  Yamada, M., Hayashida, M., Zhao, Q., Shibahara, N., Tanaka, K., Miyata, T. and Matsumoto, K. (2011) Ameliorative Effects of Yokukansan on Learning and Memory Deficits in Olfactory Bulbectomized Mice. Journal of Ethnopharmacology, 135, 737-746.
http://dx.doi.org/10.1016/j.jep.2011.04.010
[28]  Fujiwara, H., Takayama, S., Iwasaki, K., Tabuchi, M., Yamaguchi, T., Sekiguchi, K., Ikarashi, Y., Kudo, Y., Kase, Y., Arai, H. and Yaegashi, N. (2011) Yokukansan, a Traditional Japanese Medicine, Ameliorates Memory Disturbance and Abnormal Social Interaction with Anti-Aggregation Effect of Cerebral Amyloid β Proteins in Amyloid Precursor Protein Transgenic Mice. Neuroscience, 180, 305-313.
http://dx.doi.org/10.1016/j.neuroscience.2011.01.064
[29]  Giese, K.P., Fedorov, N.B., Filipkowski, R.K. and Silva, A.J. (1998) Autophosphorylation at Thr286 of the Alpha Calcium-Calmodulin Kinase II in LTP and Learning. Science, 279, 870-873.
http://dx.doi.org/10.1126/science.279.5352.870
[30]  Fukunaga, K., Shioda, N. and Miyamoto, E. (2009) The Function of CaM Kinase II in Synaptic Plasticity and Spine Formation. In: Lajtha, A., Ed., Handbook of Neurochemistry and Molecular Neurobiology, Neural Signaling Mechanisms, Springer, New York, 163-183.
http://dx.doi.org/10.1007/978-0-387-30370-3_9
[31]  Duman, R.S., Heninger, G.R. and Nestler, E.J. (1997) A Molecular and Cellular Theory of Depression. Archives of General Psychiatry, 54, 597-606.
http://dx.doi.org/10.1001/archpsyc.1997.01830190015002
[32]  Ghosh, A., Carnahan, J. and Greenberg, M.E. (1994) Requirement for BDNF in Activity-Dependent Survival of Cortical Neurons. Science, 263, 1618-1623.
http://dx.doi.org/10.1126/science.7907431
[33]  Monteggia, L.M., Barrot, M., Powell, C.M., Berton, O., Galanis, V., Gemelli, T., Meuth, S., Nagy, A., Greene, R.W. and Nestler, E.J. (2004) Essential Role of Brain-Derived Neurotrophic Factor in Adult Hippocampal Function. Proceedings of the National Academy of Sciences of the United States of America, 101, 10827-10832.
http://dx.doi.org/10.1073/pnas.0402141101
[34]  Duman, R.S. and Monteggia, L.M. (2006) A Neurotrophic Model for Stress-Related Mood Disorders. Biological Psychiatry, 59, 1116-1127.
http://dx.doi.org/10.1016/j.biopsych.2006.02.013
[35]  Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H. and Bonhoeffer, T. (1995) Hippocampal Long-Term Potentiation Is Impaired in Mice Lacking Brain-Derived Neurotrophic Factor. Proceedings of the National Academy of Sciences of the United States of America, 92, 8856-8860.
http://dx.doi.org/10.1073/pnas.92.19.8856
[36]  Korte, M., Staiger, V., Griesbeck, O., Thoenen, H. and Bonhoeffer, T. (1996) The Involvement of Brain-Derived Neurotrophic Factor in Hippocampal Long-Term Potentiation Revealed by Gene Targeting Experiments. Journal of Physiology-Paris, 90, 157-164.
http://dx.doi.org/10.1016/S0928-4257(97)81415-5
[37]  Patterson, S.L., Abel, T., Deuel, T.A., Martin, K.C., Rose, J.C. and Kandel, E.R. (1996) Recombinant BDNF Rescues Deficits in Basal Synaptic Transmission and Hippocampal LTP in BDNF Knockout Mice. Neuron, 16, 1137-1145.
http://dx.doi.org/10.1016/S0896-6273(00)80140-3
[38]  Phillips, H.S., Hains, J.M., Armanini, M., Laramee, G.R., Johnson, S.A. and Winslow, J.W. (1991) BDNF mRNA Is Decreased in the Hippocampus of Individuals with Alzheimer’s Disease. Neuron, 7, 695-702.
http://dx.doi.org/10.1016/0896-6273(91)90273-3
[39]  Siegel, G.J. and Chauhan, N.B. (2000) Neurotrophic Factors in Alzheimer’s and Parkinson’s Disease Brain. Brain Research. Brain Research Reviews, 33, 199-227.
http://dx.doi.org/10.1016/S0165-0173(00)00030-8

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413