The five-membered ring products and intermediates of cyclometalation reactions are very easily synthesized via donation from a hetero atom to a metal atom, which leads to the very high functionality of the product. This functionality is caused by the donation of the hetero atom and various types of metal atoms, halogen atom and other ligands such as alkanes, alkenes, alkynes, Cp, Cp*, aryl groups and heterocyclic compounds. These products have three types of catalytic applications: cyclometalation five-membered ring products as catalysts, cyclometalation five-membered ring intermediates as catalyst agents and cyclometalation five-membered ring intermediates with unconventional substrates and as catalyst actions. Because of the high functionality of these products, the applications of them have been increasing not only as the metathesis in the first and second generations of Hoveyda-Grubbs catalysts but also as in chiral reactions, cross-coupling reactions and polymerization reactions. The above cyclometalation products have been utilized for the production in many industrial fields such as pharmaceuticals, OLEDs, carbon dioxide utilizations, dye-sensitizer solar cells and sensors. We expect that these products would be used for the development of further new industrial products.
References
[1]
Parshall, G.W. (1970) Intramolecular Aromatic Substitution in Transition Metal Complexes. Accounts of Chemical Research, 3, 139-144. http://dx.doi.org/10.1021/ar50028a004
[2]
Trofimenko, S. (1973) Some Studies of the Cyclopalladation Reaction. Inorganic Chemistry, 12, 1215-1221. http://dx.doi.org/10.1021/ic50124a001
[3]
Dehand, J. and Pfeffer, M. (1976) Cyclometallated Compounds. Coordination Chemistry Reviews, 18, 327-352. http://dx.doi.org/10.1016/S0010-8545(00)80431-2
Constable, E.C. (1984) Cyclometallated Complexes Incorporating a Heterocyclic Donor Atom, the Interface of Coordination Chemistry and Organometallic Chemistry. Polyhedron, 3, 1037-1057. http://dx.doi.org/10.1016/S0277-5387(00)88056-0
[6]
Ryabov, A.D. (1985) Cyclopalladated Complexes in Organic Synthesis. Synthesis, 233-252. http://dx.doi.org/10.1055/s-1985-31169
[7]
Newkome, G.R., Puckett, W.E., Gupta, V.K. and Kiefer, G.E. (1986) Cyclometalation of the Platinum Metals with Nitrogen and Alkyl, Alkenyl, and Benzyl Carbon Donors. Chemical Reviews, 86, 451-451. http://dx.doi.org/10.1021/cr00072a006
[8]
Dunina, V.V. and Potatov, V.M. (1988) General Principles and Characteristics of Cyclopalladation Reactions. Russian Chemical Reviews, 57, 250-269. http://dx.doi.org/10.1070/RC1988v057n03ABEH003348
[9]
Van Koten, G. (1989) Tuning the Reactivity of Metals Held in a Rigid Ligand Environment. Pure and Applied Chemistry, 61, 1681-1894. http://dx.doi.org/10.1351/pac198961101681
[10]
Pfeffer, M. (1990) Reactions of Cyclopalladated Compound and Alkynes: New Pathways for Organic Synthesis? Recueil des Travaux Chimques des Payes-Bas, 109, 567-576. http://dx.doi.org/10.1002/recl.19901091202
[11]
Ryabov, A.D. (1990) Mechanims of Intramolecular Actination of C-H Bonds in Transition-Metal Complexes. Chemical Reviews, 90, 403-424. http://dx.doi.org/10.1021/cr00100a004
[12]
Main, L. and Nicholson, B.K. (1994) Orthomanganated Aryl Ketones and Related Compounds in Organic Synthesis. Advances in Metal-Organic Chemistry, 3, 1-51.
[13]
Kiplinger, J.L., Richmond, T.G. and Osterberg, C.E. (1994) Activation of Carbon-Fluorine Bonds by Metal Complexes. Chemical Reviews, 94, 373-431. http://dx.doi.org/10.1021/cr00026a005
[14]
Gruter, G.-J.M., van Klink, G.P.M., Akkerman, O.S. and Bickelhaupt, F. (1995) Intramolecular Coordination in Organometallic Compouds of Groups 2, 12, and 13. Chemical Reviews, 95, 2405-2456. http://dx.doi.org/10.1021/cr00039a006
[15]
Rietveld, M.H.P., Grove, D.M. and van Koten, G. (1997) Recent Advances in the Organometallic Chemistry of Aryldiamine Anions That Can Function as N,C,N'- and C,N,N'-Chelating Terdentate “Pincer” Ligands: An Overview. New Journal of Chemistry, 21, 751-771.
[16]
Van der Boom, M.E. and Milstein, D. (2003) Cyclometalated Phosphine-Based Pincer Complexes: Mechanistic Insight in Catalysis, Coordination, and Bond Activation. Chemical Reviews, 103, 1759-1792. http://dx.doi.org/10.1021/cr960118r
[17]
Dunina, V.V. and Gorunova, O.N. (2004) Phospha Plalladacycles: Preparation Routes. Russian Chemical Reviews, 73, 309-350. http://dx.doi.org/10.1070/RC2004v073n04ABEH000839
[18]
Dunina, V.V. and Gorunova, O.N. (2005) Phospha Plalladacycles: Forms of Existence and Reactions. Russian Chemical Reviews, 74, 871-913. http://dx.doi.org/10.1070/RC2005v074n10ABEH001160
[19]
Dupont, J. and Consorti, C.S. (2005) The Potential of Palladacycles: More than Just Precatalysts. Chemical Reviews, 105, 2527-2571. http://dx.doi.org/10.1021/cr030681r
[20]
Mohra, F., Privér, S.H., Bhargava, S.K. and Bennett, M.A. (2006) ORTHO-Metallated Transition Metal Complexes Derived from Tertiary Phosphine and Arsine Ligands. Coordination Chemistry Reviews, 250, 1851-1888. http://dx.doi.org/10.1016/j.ccr.2005.10.003
[21]
Vicente, J. and Saura-Llamas, I. (2007) ORTHO-Palladation Primary Amines: The Myth Dispelled. Comments on Inorganic Chemistry, 28, 39-72. http://dx.doi.org/10.1080/02603590701394766
[22]
Moreno, I., SanMartin, R., Inés, B., Herrero, M.T. and Domínguesz, E. (2009) Recent Advances in the Use of Unsymmetrical Palladium Pincer Complexes. Current Organic Chemistry, 13, 878-895. http://dx.doi.org/10.2174/138527209788452144
[23]
Djukic, J.-P., Sortais, J.-B., Barloy, L. and Pfeffer, M. (2009) Cycloruthenated Compounds—Sytesis and Applications. European Journal of Inorganic Chemistry, 2009, 817-853. http://dx.doi.org/10.1002/ejic.200801016
[24]
Albrecht, M. (2010) Cyclometalation Using d-Block Transition Metals: Fundamental Aspects and Recent Trends. Chemical Reviews, 110, 576-623. http://dx.doi.org/10.1021/cr900279a
[25]
Colby, D.A., Bergman, R.G. and Ellman, J.A. (2010) Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation. Chemical Reviews, 110, 624-655. http://dx.doi.org/10.1021/cr900005n
[26]
Lyons, T.W. and Sanford, M.S. (2010) Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions. Chemical Reviews, 110, 1147-1169. http://dx.doi.org/10.1021/cr900184e
[27]
Selander, N. and Szabó, K.J. (2011) Catalysis by Palladium Pincer Complexes. Chemical Reviews, 111, 2048-2076. http://dx.doi.org/10.1021/cr1002112
[28]
Pilarski, L.T. and Szabó, K.J. (2011) Palladium Pincer Complex Catalyzed Functionalization of Electrophiles. Current Organic Chemistry, 15, 3389-3414. http://dx.doi.org/10.2174/138527211797247987
[29]
Aguilar, D., Cuesta, L., Nieto, S., Serrano, E. and Urriolabeitia, E.P. (2011) Orthometallaton as a Strategy in Pd-Mediated Organic Synthesis. Current Organic Chemistry, 15. 3441-3464. http://dx.doi.org/10.2174/138527211797247923
[30]
Aeockiam, P.B., Bruneau, C. and Dixneuf, P.H. (2012) Ruthenium(II)-Catalyzed C-H Bond Activation and Functionalization. Chemical Reviews, 112, 5879-5918. http://dx.doi.org/10.1021/cr300153j
[31]
Omae, I. (1972) Organometallic Intramolecular-Coordination Compounds containing a Carbonyl Group. Reviews on Silicon, Germanium, Tin and Lead Compounds, 1, 59-96.
[32]
Omae, I. (1979) Organometallic Intramoleular-Coordination Compounds Containing a Nitrogen Donor Ligand. Chemical Reviews, 79, 287-321. http://dx.doi.org/10.1021/cr60320a001
[33]
Omae, I. (1979) Organometallic Intramoleular-Coordination Compounds. Recent Aspects in the Study of Sulfur Donor Ligands. Coordination Chemical Reviews, 28, 97-115. http://dx.doi.org/10.1016/S0010-8545(00)82010-X
[34]
Omae, I. (1979) Organometallic Intramoleular-Coordination Compounds. Recent Aspects in the Study of Carbonyl Donor Ligands. Chemical Field (Kagaku No Ryoiki), 33, 767-774.
[35]
Omae, I. (1980) Organometallic Intramoleular-Coordination Compounds Containing a Phosphorus Donor Ligand. Coordination Chemistry Reviews, 32, 235-271. http://dx.doi.org/10.1016/S0010-8545(00)80376-8
[36]
Omae, I. (1982) Organometallic Intramoleular-Coordination Compounds. Recent Aspects in the Study of Nitrogen Donor Ligands. Journal of Synthetic Organic Chemistry Japan (Yuki Gosei Kagaku Kyokaishi), 40, 147-157. http://dx.doi.org/10.5059/yukigoseikyokaishi.40.147
[37]
Omae, I. (1982) Organometallic Intramoleular-Coordination Compounds Containing an Arsine Donor Ligand. Coordination Chemistry Reviews, 42, 245-257. http://dx.doi.org/10.1016/S0010-8545(00)80536-6
[38]
Omae, I. (1982) Organometallic Intramoleular-Coordination Compounds Containing a Alkoxy Oxygen Donor Ligand. Chemical Industry (Kagaku Kogyo), 33, 989-996.
[39]
Omae, I. (1988) Recent Studies on Organometallic Intramoleular-Coordination Compounds. Coordination Chemistry Reviews, 83, 137-167. http://dx.doi.org/10.1016/0010-8545(88)80022-5
[40]
Omae, I. (1998) Kinds of Metals in Organometallic Intramolecular-Coordination Compounds. Chemical Industry (Kagaku Kogyo), 49, 303-310. Omae, I., Aoki, A. and Horiguchi, K. (1998) Stablities of the Five-Membered Ring Structures on Organometallic Intramolecular-Coordination Compounds. Chemical Industry (Kagaku Kogyo), 49, 469-477.
[41]
Omae, I. (2004) Intramoleular Five-Membered Ring Compounds and Their Applications. Coordination Chemical Reviews, 248, 995-1023. http://dx.doi.org/10.1016/j.ccr.2004.05.011
[42]
Omae, I. (2004) Five-Membered Ring Compounds in Organometallic Intramolecular-Coordination Compounds, Phosphorus, Sulfur, and Silicon, 179, 891-897.
[43]
Omae, I. (2007) Three Types of Reactions with Intramolecular Five-Membered Ring Compounds in Organic Synthesis. Journal Organometallic Chemistry, 692, 2608-2632. http://dx.doi.org/10.1016/j.jorganchem.2007.02.036
Omae, I. (2011) Agostic Bonds in Cyclometalation. Journal of Organometallic Chemistry, 696, 1128-1145. http://dx.doi.org/10.1016/j.jorganchem.2010.11.023
[46]
Omae, I. (2014) Applications of Five-Membered Ring Products of Cyclometalation Reactions as Anticancer Agents. Coordination Chemistry Reviews, 280, 84-95. http://dx.doi.org/10.1016/j.ccr.2014.07.019
[47]
Omae, I. (2014) Unconventional Cyclometalation Reactions. Current Organic Chemistry, 18, 2776-2795. http://dx.doi.org/10.2174/1385272819666141013224601
[48]
Omae, I. (2016) Applications of the Five-Membered Ring Blue Light-Emitting Iridium Products of Cyclometalation Reactions as OLEDs. Coordination Chemistry Reviews, 310, 154-169. http://dx.doi.org/10.1016/j.ccr.2015.08.009
[49]
Omae, I. (2016) Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions. Current Organic Chemistry, 20, 953-962. http://dx.doi.org/10.2174/1385272819666151022220954
[50]
Morales-Morales, D. and Jensen, C.M. Eds. (2007) The Chemistry of Pincer Compounds. Elsevier, Amsterdam.
[51]
Chatani, N. Ed. (2007) Directed Metallation. Springer, Heidelberg. http://dx.doi.org/10.1007/978-3-540-75809-9
[52]
Dupont, J. and Pfeffer, M. Eds. (2008) Palladacycles, Synthesis, Characterization and Applications. Wiley-VCH, Weinheim.
[53]
Van Koten, G. and Milstein, D.M. Eds. (2013) Organometallic Pincer Chemistry. Springer, Heidelberg. http://dx.doi.org/10.1007/978-3-642-31081-2
[54]
Omae, I. (1986) Organometallic Intramolecular-Coordination Compounds. Elsevier, Amsterdam.
[55]
Omae, I. (2014) Cyclometalation Reactions: Five-Membered Ring Products as Universal Reagents. Springer, Heidelberg. http://dx.doi.org/10.1007/978-4-431-54604-7
[56]
Basolo, F. and Johnson, R. (1964) Coordination Chemistry, the Chemistry of Metal Complexes. The Benjamin/Cummings Publishing Company, London.
[57]
Omae, I. (1982) Organometallic Intramolecular-Coordination Compounds Containing a Cyclopentadienyl Donor Ligand. Coordination Chemistry Reviews, 42, 31-54. http://dx.doi.org/10.1016/S0010-8545(00)80526-3
[58]
Omae, I (1982) Organometallic Intramolecular-Coordination Compounds Containing a Carbon-Carbon Double Bond Donor Ligand. Angewandte Chemie International Edition, 21, 889-902. http://dx.doi.org/10.1002/anie.198208891
[59]
Omae, I. (1983) Organometallic Intramolecular-Coordination Compounds Containing a Diolefin Double Bond Donor Ligand. Coordination Chemistry Reviews, 51, 1-39. http://dx.doi.org/10.1016/0010-8545(83)80025-3
[60]
Omae, I. (1984) Organometallic Intra-molecular-Coordination Compounds Containing a Allyl Donor Ligand. Coordination Chemistry Reviews, 53, 261-291. http://dx.doi.org/10.1016/0010-8545(84)85010-9
[61]
Fisher, D.F., Barakat, A., Xin, Z., Weiss, M.E. and Peters, R. (2009) The Asymmetric Aza-Claisen Rearrangement: Development of Widely Applicable Pentaphenylferrocenyl Palladacycle Catalysts. Chemistry—A Europian Journal, 15, 8722-8741. http://dx.doi.org/10.1002/chem.200900712
[62]
Albert, J., Granell, J. and Muller, G. (2006) Synthesis and Applications of Optically Active Metallacycles Derived from Primary Amines. Journal of Organometallic Chemistr, 691, 2101-2106. http://dx.doi.org/10.1016/j.jorganchem.2005.10.041
[63]
Nishiyama, H. (2007) Synthesis and Use of Bisoxazolinyl-Phenyl Pincers. Chemical Society Reviews, 36, 1133-1141. http://dx.doi.org/10.1039/b605991k
[64]
Diukic, J.-P., Hijazi, A., Flack, H.D. and Bernardinelli, G. (2008) Non-Racemic (Scalemic) Planar-Chiral Five-Membered Metallacycles: Routes, Means, and Pitfalls in Their Synthesis and Characterization. Chemical Society Reviews, 37, 406-425. http://dx.doi.org/10.1039/B618557F
[65]
Nishiyama, H. and Ito, J. (2010) Bis(Oxazolinyl)Phenyl Transition-Metal Complexes: Asymmetric Catalysis and Some Reactions of the Metals. Chemical Communication, 46, 203-212. http://dx.doi.org/10.1039/B918923H
[66]
Dunina, V.V., Gorunova, O.N., Zykov, P.A. and Kochetkov, K.A. (2011) Cyclopalldated Complexes in Enantioselective Catalysis. Russian Chemical Reviews, 80, 51-74. http://dx.doi.org/10.1070/RC2011v080n01ABEH004151
[67]
Dunina, V.V. (2011) Chiral Cyclopalladated Compounds: New Structures, Methodologies and Applications. A Personal Account. Current Organic Chemistry, 15, 3415-3440. http://dx.doi.org/10.2174/138527211797247941
[68]
Hosokawa, S., Ito, J. and Nishiyama, H. (2010) A Chiral Iron Complex Containing a Bis(Oxazolinyl)Phenyl Ligand: Preparation and Asymmetric Hydrosilylation of Ketones. Organometallics, 29, 5773-5775. http://dx.doi.org/10.1021/om1009186
[69]
Chen, L.-A., Xu, W., Huang, B., Ma, J., Wang, L., Xi, J., Harms, K., Gong, L. and Meggers, E. (2013) Asymmetric Catalysis with an Inert Chiral-at-Metal Iridium Complex. Journal American Chemical Society, 135, 10598-10601. http://dx.doi.org/10.1021/ja403777k
[70]
Kung, K.K.-Y., Lo, K.-Y., Ko, H.-M., Li, G.-L., Leung, K.-C., Zhou, Z., Wang, M.-Z., Che, C.-M. and Wong, M.-K. (2013) Cyclometallated Gold(III) Complexes as Effective Catalysts for Synthesis of Progargylic Amines, Chiral Allenes and Isoxazoles. Advances Synthesis Catalysis, 355, 2055-2070. http://dx.doi.org/10.1002/adsc.201300005
[71]
Reznichenko, A.L. and Hultzsch, K.C. (2013) C1-Symmetric Rare-Earth-Metal Aminodiolate Complexes for intra- and Intermolecular Asymmetric Hydroamination of Alkenes. Organometallics, 32, 1394-1408. http://dx.doi.org/10.1021/om3010614
[72]
Miyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. and Noyori, R. (1980) Synthesis of 2.2’- Bis(Diphenylphosphino)-1,1’-Binaphthyl (BINAP), an Atropisomeric Chiral Bis(Triaryl)Phosphine, and Its Use in the Rhodium(I)-Catalyzed Asymmetric Hydrogenation of .alpha.-(Acylamino)Acrylic Acids. Journal American Chemical Society, 102, 7932-7934. http://dx.doi.org/10.1021/ja00547a020
[73]
Ohshima, T., Kawabata, T., Takeuchi, Y., Kakinuma, T., Iwasaki, T., Yonezawa, T., Murakami, H., NIshiyama, H. and Mashima, K. (2011) C1-Symmetric Rh/Phebox-Catalyzed Asymmetric Alkynylation of α-Ketoesters. Angewandete Chemistry International Edition, 50, 6296-6300. http://dx.doi.org/10.1002/anie.201100252
[74]
Overman, L.E., Owen, C.E. and Pavan, M.M. (2003) Catalytic Asymmetric Rearrangement of Allyic N-Aryl Trifluoroacetimidates. A Useful Method for Transforming Prochiral Allylic Alcohols to Chiral Allylic Amines. Organic Letters, 5. 1809-1812. http://dx.doi.org/10.1021/ol0271786
[75]
Motoyama, Y., Koga, Y., Kobayashi, K., Aoki, K. and Nishiyama, H. (2002) Novel Asymmetric Michael Addition of α-Cyanopropionates to Acrolein by the Use of a Bis(Oxazolinyl)Phenylstannane-Derived Rhodium(III) Complex as a Chiral Lewis Acid Catalyst. Chemistry—A Europian Journal, 8, 2968-2975. http://dx.doi.org/10.1002/1521-3765(20020703)8:13<2968::AID-CHEM2968>3.0.CO;2-6
[76]
Chan, P.W.H., Cottrell, I.F. and Moloney, M.G. (1997) Conjugate Addition of Nitogen Nucleophiles to an α, β-Unsaturated Pyrrolidinone. Tetrahedron Letter, 38, 5891-5894. http://dx.doi.org/10.1016/S0040-4039(97)01312-9
[77]
Stark, M.A., Jones, G. and Richards, C.J. (2000) Cationic [2,6-Bis(2‘-Oxzolinyl)Palladium(II) Complexes: Catalysts for the Asymmetric Michael Reaction. Organometallics, 19, 1282-1291. http://dx.doi.org/10.1021/om990710h
[78]
Fossey, J.S. and Richards, C.J. (2004) Synthesis of 2,6-(2-Oxazolinyl)Phenylpaatinum(II) NCN Pincer Complexes by Direct Cyclometalation. Catalysts for Carbon-Carbon Bond Formation. Organometallics, 23, 367-373. http://dx.doi.org/10.1021/om0305162
Colacino, E., Martinez, J. and Lamaty, F. (2007) Preparation of NHC-Ruthenium Complexes and Their Catalytic Activity in Metathesis Reaction. Coordination Chemistry Reviews, 251, 726-764. http://dx.doi.org/10.1016/j.ccr.2006.07.017
[81]
Samojlowicz, C., Bieniek, M. and Grela, K. (2009) Ruthenium-Based Olefin Methathesis Catalysts N-Heterocyclic Carbene Ligands. Chemical Reviews, 109, 3708-3742. http://dx.doi.org/10.1021/cr800524f
[82]
Vougiokalakis, G.C. and Grubbs, R. (2010) Rhthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. Chemical Reviews, 110, 1746-1787. http://dx.doi.org/10.1021/cr9002424
[83]
Kress S. and Blechert S. (2012) Asymmetric catalysts for stereocontrolled olefin metathesis reactions. Chemical Society Reviews, 41, 4389-4408. http://dx.doi.org/10.1039/c2cs15348c
[84]
Miki, K., Inoue, T. and Ohe, K. (2013) Metathesis Polymerization-Based Synthesis of Functionalized Polymers Aiming at Medicinal Application. Journal of Synthetic Organic Chemistry Japan (Yuki Gosei Kagaku Kyokaishi), 71, 601-615. http://dx.doi.org/10.5059/yukigoseikyokaishi.71.601
Yao, Q. and Sheets, M. (2005) An Ionic Liquid-Tagged Second Generation Hoveyda-Grubbs Ruthenium Carbene Complex as Highly Reactive and Recyclable Catalyst for Ring-Closing Metathesis of Di-, Tri- and Tetrasubstituted Dienes. Journal of Organometallic Chemistry, 690, 3577-3584. http://dx.doi.org/10.1016/j.jorganchem.2005.03.031
[87]
Garber, S.B., Kingsbury, J.S., Gray, B.L. and Hoveyda, A.H. (2000) Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts. Journal American Chemical Society, 122, 8168-8179. http://dx.doi.org/10.1021/ja001179g
[88]
Ohshima, K. (2010) Cross-Coupling Reactions. Chemistry (Kagaku), 65, 12-17. Kagaku, S. Ed. (2010) A Chronological Table of Cross-Coupling Reactions. Chemistry (Kagaku), 65, 18-20.
[89]
Herrmann, W.A., Bohm, V.P.W. and Reisinger, C.-P. (1999) Application of Palladacycles in Heck Type Reactions. Journal of Organometallic Chemistry, 576, 23-41. http://dx.doi.org/10.1016/S0022-328X(98)01050-X
[90]
Littke, A.F. and Fu, G.C. (2002) Palladium-Catalyzed Coupling Reactions of Aryl Chlorides. Angewandte Chemie International Edition, 41, 4176-4211. http://dx.doi.org/10.1002/1521-3773(20021115)41:22<4176::AID-ANIE4176>3.0.CO;2-U
[91]
Singleton, J.T. (2003) The Uses of Pincer Complexes in Organic Synthesis. Tetrahedron, 59, 1837-1857. http://dx.doi.org/10.1016/S0040-4020(02)01511-9
[92]
Bedford, R.B. (2003) Palladacyclic Catalysts in C-C and C-Heteroatom Bond-Forming Reactions. The Royal Society of Chemistry, Chemical Communication, 1787-1796. http://dx.doi.org/10.1039/B211298C
[93]
Beletskaya, I.P. and Cheprakov, A.V. (2004) Palladaycycles in Catalysis—A Critical Survey. Journal of Organometallic Chemistry, 689, 4055-4082. http://dx.doi.org/10.1016/j.jorganchem.2004.07.054
[94]
Alonso, D.A. and Nájera, C. (2010) Oxime-Derived Palladacycles as Source of Palladium Nanoparticles. Chemical Society Reviews, 39, 2891-2902. http://dx.doi.org/10.1039/b821314n
[95]
Frey, G.D., Schütz, J., Herdtweck, E. and Herrmann, W.A. (2005) Synthesis and Characterization of N-Heterocyclic Carbene Phospha-Palladacycles and Their Propterties in Heck Ca-talysis. Organometallics, 24, 4416-4426. http://dx.doi.org/10.1021/om049001g
[96]
Botella, L. and Najera, C. (2002) Cross-Coupling Reactions with Boronic Acids in Water Catalyzedby Oxime-Derived Palladacycles. Journal of Organometallic Chemistry, 663, 46-57. http://dx.doi.org/10.1016/S0022-328X(02)01727-8
[97]
Albisson, D.A., Bedford, R.B., Lawrence, S.E. and Scully P.N. (1998) Orthopalldated Triaryl Phosphite Complexes as Highly Active Catalysts in Biaryl Coupling Reactions. Chemical Communications, 2095-2096. http://dx.doi.org/10.1039/a806041j
[98]
Liang, L.-C., Chien, P.-S. and Huang, M.-H. (2005) Catalytic Suzuki Coupling Reactions by Amido Phosphine Complexes of Palladium. Organometallics, 24, 353-357. http://dx.doi.org/10.1021/om0492395
[99]
Juliá-Hernández, F., Arcas, A. and Vicente, J. (2012) Providing Support in Favor of the Existence of a PdII/PdIV Catalytic Cycle in a Heck-Type Reaction. Chemistry—A Europian Journal, 18, 7780-7786. http://dx.doi.org/10.1002/chem.201103679
[100]
Tsubomura, T., Chiba, M., Nagai, S., Ishihira, M., Matsumoto, K. and Tsukuda, T. (2011) Dinuclear Macrocyclic Palladium Complexes Having Pincer Coordinating Groups and Their Catalytic Properties in Misoroki-Heck Reactions. Journal of Organometallic Chemistry, 696, 3657-3661. http://dx.doi.org/10.1016/j.jorganchem.2011.08.024
[101]
Pérez, M.A., Quijada, R., Ortega-Jiménezm, F. and Alvarez-Toledano, C. (2005) Cyclopalldated Complexes Derivates of Phenylhydrazones and Their Use as Catalysts in Ethylene Polymerization. Journal of Molecular Catalysis A: Chemical, 226, 291-295. http://dx.doi.org/10.1016/j.molcata.2004.08.013
[102]
Frazier, K.A., Froese, R.D., He, Y., Klosin, J., Theriaut, C.N., Vosejpka, P.C. and Zhou, Z. (2011) Pyridylamido Hafnium and Zirconium Complexes: Synthesis, Dynamic Behavior, and Ethylene/1-Octene and Propylene Polymerization Reactions. Organometallics, 30, 3318-3329. http://dx.doi.org/10.1021/om200167h
[103]
Loi, Z., Gao, W., Liu, X., Luo, X., Cui, D. and Mu, Y. (2011) Pincer Chromium(II) and Chromium(III) Complexes Supported by Bis(Imino)Aryl NCN Ligands: Synthesis and Catalysis on Isoprene Polymerization. Organometallics, 30, 752-759. http://dx.doi.org/10.1021/om1009236
[104]
Baratta, W., Siega, K. and Rigo, P. (2007) Catalytic Transfer-Hydrogenation with Terdentate CNN Ruthenium Complexes: The Influence of the Base. Chemistry—A Europian Journal, 13, 7479-7486. http://dx.doi.org/10.1002/chem.200700507
[105]
Engle, K.M., Mei, T.-S., Wasa, M. and Yu, J.-Q. (2012) Weak Coordination as a Powerful Means for Developing Broadly Useful C-H Functionalization Reactions. Accounts of Chemical Research, 45, 788-802. http://dx.doi.org/10.1021/ar200185g
[106]
Murai, S., Kakiuchi, F., Sekine, S., Tanaka, Y., Kamatani, A., Sonoda, M. and Chatani, N. (1993) Efficient Catalytic Addition of Aromatic Carbon-Hydrogen Bonds to Olefins. Nature, 366, 529-531. http://dx.doi.org/10.1038/366529a0
[107]
Borman, S. (1993) ORGANOMETALLIC SYNTESIS Aromatic Added to Alkenes in One Step. Chemical Engineering News, 6-7.
[108]
Murai, S., Kakiuchi, F., Sekine, S., Tanaka, Y., Kamatani, A., Sonoda, M. and Chatani, N. (1994) Catalytic C-H/olefin Coupling. Pure & Application Chemistry, 66, 1527-1534. http://dx.doi.org/10.1351/pac199466071527
[109]
Kakiuchi, F., Tanaka, Y., Sato, T., Chatani, N. and Murai, S. (1995) Catalytic Addition of Olefinic C-H Bonds to Olefins. Chemistry Letters, 679-680. http://dx.doi.org/10.1246/cl.1995.679
[110]
Kakiuchi, F., Sekine, S., Tanaka, Y., Kamatani, A., Sonoda, M., Chatani, N. and Murai, S. (1995) Catalytic Addition of Aromatic Carbon-Hydrogen Bonds to Olefins with the Aid of Ruthenium Complexes. Bulletin of the Chemical Society of Japan, 68, 62-83. http://dx.doi.org/10.1246/bcsj.68.62
[111]
Sonoda, M., Kakiuchi, F., Chatani, N. and Murai, S. (1997) Ruthenium-Catalyzed Addition of Carbon-Hydrogen Bonds in Aromatic Ketones to Olefines. The Effect of Various Substituents at the Aromatic Ring. Bulletin of the Chemical Society of Japan, 70, 3117-3128. http://dx.doi.org/10.1246/bcsj.70.3117
[112]
Chatani, N., Ie, Y., Kakiuchi, F. and Murai, S. (1999) Ru3(CO)12-Catalyzed Decarbonylative Cleavage of a C-C Bond of Alkyl Phenyl Ketones. Journal Chemical Society, 121, 8645-8646. http://dx.doi.org/10.1021/ja992048m
[113]
Kakiuchi, F., Matsumoto, M., Sonoda, M., Chatani, N., Murai, S., Furukawa, N. and Seki, Y. (2000) A New Synthetic Route to Heteroarylsilanes Fia Ruthenuim-Catalyzed C-H/SiR3. Chemistry Letters, 750-751. http://dx.doi.org/10.1246/cl.2000.750
[114]
Kakiuchi, F., Ohtaki, H., Sonoda, M., Chatani, N. and Murai, S. (2001) Mechanistic Study of the Ru(H)2(CO)(PPh3)3-Catalyzed Addition of C-H Bonds in Aromatic Esters to Olefins. Chemistry Letters, 918-919. http://dx.doi.org/10.1246/cl.2001.918
[115]
Kakiuchi, F. and Murai, S. (2002) Catalytic C-H/Olefin Coupling. Accounts of Chemical Reseach, 35, 826-834. http://dx.doi.org/10.1021/ar960318p
[116]
Kakiuchi, F., Kan, S., Igi, K., Chatani, N. anad Murai, S. (2003) A Ruthenium-Catalyzed Reaction of Aromatic Ketones with Aryboronates: A New Method for the Arylation of Aromatic Compounds via C-H Bond Cleavage. Journal American Chemical Society, 125, 1698-1699. http://dx.doi.org/10.1021/ja029273f
[117]
Park, S.H., Kim, J.Y. and Chang, C. (2011) Rhodium-Catalyzed Selective Olefination of Arene Esters via C-H Bond Activation. Organic Letters, 13, 2372-2375. http://dx.doi.org/10.1021/ol200600p
[118]
Girling, I.R. and Widdowson, D.A. (1982) Cyclopalladated Imines in Synthesis: The Preparation of Unsymmetrical Stilbenes and 3-Arylisoquinolones. Teterahedron Letters, 23, 1957-1960. http://dx.doi.org/10.1016/S0040-4039(00)87233-0
[119]
Jun, C.-H., Lee, H. and Hong, J.-B. (1997) Chelation-Assisted Intermoleular Hydroacyclation: Direct Synthesis of Ketone from Aldehyde and 1-Alkene. Journal Organic Chemistry, 62, 1200-1201. http://dx.doi.org/10.1021/jo961887d
[120]
Harbourne, D.A. and Stone, F.G.A. (1968) Chemistry of the Metal Carbonyls. Part XLVII. Reactions of 3,3,3-Tri-fluoropropyne. Journal Chemical Society A, 1765-1771. http://dx.doi.org/10.1039/j19680001765
[121]
DeShong, P., Sidler, D.R., Rybczynki, P.J., Slough, G.A. and Rheingold, A.L. (1988) A General Method for the Preparation of Carbonyl Compounds and Butenolides from Organomanganese Pentacarbonyl Complexes. Journal American Chemical Society, 110, 2575-2585. http://dx.doi.org/10.1021/ja00216a034
[122]
Cassar, D.J., Ilyashenki, G., Ismail, M., Woods, J., Hughes, D.L. and Richards C.J. (2013) Enantioselective Synthesis and Application to the Allylic Imidate Rearrangement of Amine-Coordinated Palladacycle Catalysts of Cobalt Sandwich Complexes. Chemistry—A Europian Journal, 19, 17951-17962. http://dx.doi.org/10.1002/chem.201302922
[123]
Chanthamath, S., Nguyen, D.T., Shibatomi, K. and Iwasa, S. (2013) Highly Enantioselective Synthesis of Cyclopropylamine Derivatives via Ru(II)-Phenox-Catalyzed Direct Asymmetric Cyclopropanation of Vinylcarbamates. Organic Letters, 15, 772-775. http://dx.doi.org/10.1021/ol303404c
[124]
Jia, Y.-X., Li, B.-B., Li, Y., Pullarkat, S.A., Xu, K., Hirato, H. and Leung, P.-H. (2014) Stereoelectronic and Catalytic Properties of Chiral Cyclometalated Phos-Palladium and -Platinum Complexes. Organometallics, 33, 6053-6058. http://dx.doi.org/10.1021/om500662q
[125]
Sabater, S., Mata, J.A. and Peris, E. (2013) Chiral Palladacycles with N-Heterocyclic Carbene Ligands as Catalysts for Asymmetric Hydro-phosphination. Organometallics, 32, 1112-1120. http://dx.doi.org/10.1021/om400007a
[126]
Huo, H., Fu. C., Harms, K. and Meggers, E. (2014) Asymmetric Catalysis with Substitutionally Labile yet Stereochemically Stable Chiralat-Metal Iridiium(III) Complex. Journal American Chemical Society, 136, 2990-2993. http://dx.doi.org/10.1021/ja4132505
[127]
Toribatake, K. and Nishiyama, H. (2013) Asymmetric Diboration of Teminal Alkenes with a Rhodium Catalyst and Subsequent Oxidation: Enantioselective Synthesis of Optically Active 1,2-Diols. Angewandte Chemie International Editions, 52, 11011-11015. http://dx.doi.org/10.1002/anie.201305181
[128]
Schramm, Y., Barrios-Landeros, F. and Pfaltz, A. (2013) Discov-ery of an iridacycle catalyst with improved reactivity and enantioselectivity in the hydrogenation of dialkyl ketimines. Chemical Science, 4, 2760-2766. http://dx.doi.org/10.1039/c3sc50587a
[129]
Chew, R.J., Huang, Y., Li, Y., Pullarkat, S.A. and Leung, P.-H. (2013) Enantioselective Addition of Diphenylphosphine to 3-Methyl-4-Nitro-5-Alkenylisoxazoles. Advance Synthesis Catalysis, 355, 1403-1408. http://dx.doi.org/10.1002/adsc.201300164
[130]
Ito, J. and Nishiyama, H. (2013) Asymmetric Catalysis Mediated by Optically Active Bis(Ozazolinyl)Phenyl Metal Complexes. Journal of Synthetic Organic Chemistry Japan (Yuki Gosei Kagaku Kyokaishi), 71, 791-803. http://dx.doi.org/10.5059/yukigoseikyokaishi.71.791
[131]
Cheow, Y.L., Pullarkat, S.A., Li, Y. and Leung, P.-H. (2012) Asymmetric Hydroarsilnation Reactions toward Synthesis of Alcohol Functionalized C-Chiral As-P Lingads Promoted by Chiral Cyclomeallated Complexes. Journal of Organometallic Chemistry, 696, 4215-4220. http://dx.doi.org/10.1016/j.jorganchem.2011.09.016
[132]
Ito, J., Teshima, T. and Nishiyama, H. (2012) Enhancement of Enantioselectivity by Alcohol Additives in Asymmetric Hydrogenation Woth Bis(Oxazolinyl)Phenyl Ruthenium Catalysts. Chemical Communications, 48, 1105-1107. http://dx.doi.org/10.1039/C1CC16057E
[133]
Yang, Z., Liu, D., Liu, Y., Sugiya, M., Imamoto, T. and Zhang, W. (2015) Synthesis and Structural Chraracterization of Nickel Complexes Possessing P-Stereogenic Pincer Scaffolds and Their Application in Asymmetric Aza-Michael Reactions. Organometallics, 34, 1228-1237. http://dx.doi.org/10.1021/om501287k
[134]
Peeck, L.H., Savka, R.D. and Plenio, H. (2012) Fast Olefin Metathesis at Low Catalyst Loading. Chemistry—A Europian Journal, 18, 12845-12853. http://dx.doi.org/10.1002/chem.201201010
[135]
Juliá-Hernández, F., Arcas, A. and Vicente, J. (2012) Providing Support in Favor of the Existence of a PdII/PIV Catalytic Cycle in a Heck-Type Reaction. Chemistry—A Europian Journal, 18, 7780-7786. http://dx.doi.org/10.1002/chem.201103679
[136]
Tsubomura, T., Chiba, M., Nagai, S., Ishihira, M., Matsumoto, K. and Tsukuda, T. (2011) Dinuclear Macrocyclic Palladium Complexes Having Pincer Co-ordinating Groups and Their Catalystic Properties in Mizoki-Heck Reactions. Journal of Organometallic Chemistry, 696, 3657-3661. http://dx.doi.org/10.1016/j.jorganchem.2011.08.024
[137]
Kozlov, V.A., Aleksanyan, D.V., Neyyubina, Y.V., Lyssenko, K.A., Petrovskii, P.V., Vasil’ev, A.A. and Odinets, I.L. (2011) Hybrid Thiophosphor-yl-Benzothiazole Palladium SCN-Pincer Complexes: Synthesis and Effect of Structure Modifications on Catalytic Performancein the Suzuki Cross-Coupling. Organometallics, 30, 2920-2932. http://dx.doi.org/10.1021/om101012r
[138]
Yu, A., Li, X., Peng, D., Wu, Y. and Chang, J. (2012) Cyclopalladated Ferrocenylimine as an Efficient Catalyst for the Syntheses of Diarylmethane Derivatives. Applied Organometallic Chemistry, 26, 301-304. http://dx.doi.org/10.1002/aoc.2859
[139]
McGowan, K.P. and Veige, A.S. (2012) A Neutral Trianionic Pincer [NCN]CrIV-Me Complex as a Highly Ethylene Polymerization Precatalyst. Journal of Organometallic Chemistry, 711, 10-14. http://dx.doi.org/10.1016/j.jorganchem.2012.03.007
[140]
Luconi, L., Rossin, A., Tuci, G., Tritto, I., Boggioni, L., Klosin, J.J., Theriault, C.N. and Giambastiani, G. (2012) Facing Unexpected Reactivity Pathswith ZrIV-Pyridylamido Polymerization Catlysts. Chemistry—A Europian Journal, 18, 671-687. http://dx.doi.org/10.1002/chem.201102194
[141]
Admas, J.J., Arulsamy, N. and Roddick, D.M. (2012) Investigation of Iridium CF3PCP Pincer Catalytic Dehydrogenation and Decarbonylation Chemistry. Organometallics, 31, 1439-1447. http://dx.doi.org/10.1021/om2011886
[142]
Du, W., Wang, L., Wu, P. and Yu, Z. (2012) A Versatile Ruthenium(II) Complex Catalyst for Transfer Hydrogenatation of Ketones and Oppenauer-Type Oxidaton of Alcohols. Chemistry—A Europian Journal, 18, 11550-11554. http://dx.doi.org/10.1002/chem.201201938
[143]
Li, L., Yu, P., Cheng, J., Chen, F. and Pan, C. (2012) Copper(II)-Catallyzed ORTHO-Benzoxylation of 2-Arylpyridines with Sodium Carboxylates. Chemistry Letters, 41, 600-602. http://dx.doi.org/10.1246/cl.2012.600
[144]
Song, W. and Ackermann, L. (2012) Cobalt-Catalyzed Direct Arylation and Benzylation by C-H/C-O Cleavage with Sulfamates, Carbamates, and Phosphates. Angewandte Chemie International Edition, 51, 8251-8254. http://dx.doi.org/10.1002/anie.201202466
[145]
Schroder, N., Besset, T. and Glorius, F. (2012) Synthesis of Olefin-Oxazoline Ligands (OlefOx) by Rhodium(III)-Catalyzed Oxidative Olefination. Advances Synthesis Catalysis, 354, 579-583. http://dx.doi.org/10.1002/adsc.201100711
[146]
Wang, C., Chen, H., Wang, Z., Chen, J. and Huang, Y. (2012) Rhodium (III)-Catalyzed C-H Activation of Arenes Using a Versatile and Removable Triazene Directing Group. Angewandte Chemie International Edition, 51, 7242-7245. http://dx.doi.org/10.1002/anie.201203230
[147]
Kuninobu, Y. and Takai, K. (2012) Development of Novel and Highly Efficient Methods to Construct Carbon-Carbon Bonds Using Group 7 Transition-Metal Catalysts. Bulletin of the Chemical Society of Japan, 85, 656-671. http://dx.doi.org/10.1246/bcsj.20120015
[148]
Sharma, S., Park, E., Park, J. and Kim, I.S. (2012) Tandem Rh(III)-Cata;used Oxidative Acylation of Secondary Benzamides with Aldehydes and Intramolecular Cyclization: The Direct Synthesis of 3-Hydroxyisoindolin-1-Ones. Organic Letters, 14, 906-909. http://dx.doi.org/10.1021/ol2034228
[149]
Ryu, J., Shin, K., Park, S.H., Kim, J.Y. and Chang, S. (2012) Rhodium-Catalyzed Direct C-H Amination of Benzamides with Aryl Azides: A Synthetic Route to Diarylamines. Angewandte Chemie International Edition, 51, 9904-9908. http://dx.doi.org/10.1002/anie.201205723
[150]
Niu, L., Yang, H., Yang, D. and Fu, H. (2012) Fuctionalizations of Aryl C-H Bonds in 2-Arylpyridines via Sequential Borylation and Coper Catalysis. Advances Synthesis Catalysis, 354, 2211-2217. http://dx.doi.org/10.1002/adsc.201100930
[151]
Sakurai, T., Matsuoka, Y., Hanataka, T., Fukuyama, N., Namikoshi, T., Watanabe, S. and Murata, M. (2012) Ruthenium-Catalyzed ORTHO-Selective Aromatic C-H Silylation: Acceptorless Dehydrogenative Coupling of Hydrosilanes. Chemistry Letters, 41, 374-376. http://dx.doi.org/10.1246/cl.2012.374