全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Therapeutic Potential of Neem Synthesized Silver Nanoparticles on Human Gastric Cancer Cells in Vitro

DOI: 10.4236/wjnse.2016.62010, PP. 90-110

Keywords: Gastric Cancer, Nanotherapy, Silver Nanoparticles, Neem Compounds, iIn Vitroi Cancer Treatment, Biochemical Changes in Nanotreatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanotechnology has shown significant promise in development of drugs and drug delivery systems that can overcome all limitations and address urgent needs to improve efficacy of diagnosis and therapy of various diseases including cancer. The functionalization with neem compounds as synthesis and capping agent had shown very high anticancer activities against Gastric cancer cells in vitro. The biochemical factors like albumin, glucose, and DNA concentrations were modulated along with Protease inhibitor and Catalase activates, the various cancer specific proteins like p53, GRD 70 - 78 kDa and other proteins of sizes 35 - 40 kDa corresponding to H+K+ATPase protein etc. The apoptic activity and antiproliferative activity were demonstrated with Gastric cancer cells in vitro.

References

[1]  Liang, S., Li, C., Zhang, C., Chen, Y., Xu, L., Bao, C., Wang, X., Liu, G., Zhang, F. and Cui, D. (2015) CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-Like Cells. Theranostics, 5, 970-984.
http://www.thno.org/v05p0970.htm
[2]  Chinnaiyan, A.M., Prasad, U., Shankar, S., et al. (2000) Combined Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand and Ionizing Radiation in Breast Cancer Therapy. Proceedings of the National Academy of Sciences of the United states of America, 97, 1754-1759.
http://dx.doi.org/10.1073/pnas.030545097
[3]  Matés, J.M. and Sánchez-Jiménez, F.M. (2000) Role of Reactive Oxygen Species in Apoptosis: Implications for Cancer Therapy. The International Journal of Biochemistry & Cell Bi-ology, 32, 157-170.
http://dx.doi.org/10.1016/S1357-2725(99)00088-6
[4]  Wajant, H., Pfizenmaier, K. and Scheurich, P. (2002) TNF-Related Apoptosis Inducing Ligand (TRAIL) and Its Receptors in Tumor Surveillance and Cancer Therapy. Apoptosis, 7, 449-459.
http://dx.doi.org/10.1023/A:1020039225764
[5]  Stoklosa, T. and Golab, J. (2005) Prospects for p53-Based Cancer Therapy. Acta Biochimica Polonica, 52, 321-328.
[6]  Jedinak, A and Maliar, T. (2005) Inhibitors of Proteases as Anticancer Drugs. Neoplasma, 52, 185-192.
[7]  Ip, S.W., Weng, Y.S., Lin, S.Y., Mei, D., Tang, N.Y., Su, C.C. and Chung, J.G. (2007) The Role of Ca2+ on Rhein-Induced Apoptosis in Human Cervical Cancer Ca Ski Cells. Anticancer Research, 27, 379-389.
[8]  Garrett, M.D. and Collins, I. (2011) Anticancer Therapy with Checkpoint Inhibitors: What, Where and When? Trends in Pharmacological Sciences, 32, 308-316.
http://dx.doi.org/10.1016/j.tips.2011.02.014
[9]  Borrelli, A., Schiattarella, A., Mancini, R., Morelli, F., Capasso, C., De Luca, V., Gori, E. and Mancini, A. (2011) The Leader Peptide of a Human rec. MnSOD as Molecular Carrier Which Delivers High Amounts of Cisplatin into Tumor Cells Inducing a Fast Apoptosis in Vitro. International Journal of Cancer, 128, 453-459.
http://dx.doi.org/10.1002/ijc.25334
[10]  Smith, D.G., Magwere, T. and Burchill, S.A. (2011) Oxidative Stress and Therapeutic Opportunities: Focus on the Ewing’s Sarcoma Family of Tumors. Expert Review of Anticancer Therapy, 11, 229-249.
http://dx.doi.org/10.1586/era.10.224
[11]  Li, L., Ishdorj, G. and Gibson, S.B. (2012) Reactive Oxygen Species Regulation of Autophagy in Cancer: Implications for Cancer Treatment. Free Radical Biology and Medicine, 53, 1399-1410.
http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.011
[12]  Kukowska-Latallo, J.F., et al. (2005) Nanoparticle Targeting of Anticancer Drug Improves Therapeutic Response in Animal Model of Human Epithelial Cancer. Cancer Research, 65, 5317-5324.
http://dx.doi.org/10.1158/0008-5472.CAN-04-3921
[13]  Roy, I., et al. (2003) Ceram-ic-Based Nanoparticles Entrapping Water-Insoluble Photosensitizing Anticancer Drugs: A Novel Drug-Carrier System for Photodynamic Therapy. Journal of the American Chemical Society, 125, 7860-7865.
http://dx.doi.org/10.1021/ja0343095
[14]  Batrakova, E.V. and Kabanov, A.V. (2008) Pluronic Block Copolymers: Evolution of Drug Delivery Concept from Inert Nanocarriers to Biological Response Modifiers. Journal of Controlled Release, 130, 98-106.
http://dx.doi.org/10.1016/j.jconrel.2008.04.013
[15]  Kratz, F. (2008) Albumin as a Drug Carrier: Design of Prodrugs, Drug Conjugates and Nanoparticles. Journal of Controlled Release, 132, 171-183.
http://dx.doi.org/10.1016/j.jconrel.2008.05.010
[16]  Egusquiaguirre, S.P., Igartua, M., Hernández, R.M. and Pedraz, J.L. (2012) Nanoparticle Delivery Systems for Cancer Therapy: Advances in Clinical and Preclinical Research. Clinical and Translational Oncology, 14, 83-93.
http://dx.doi.org/10.1007/s12094-012-0766-6
[17]  Wang, Q., Zhang, C., Shen, G., Liu, H., Fu, H. and Cui, D. (2014) Fluorescent Carbon Dots as an Efficient siRNA Nanocarrier for Its Interference Therapy in Gastric Cancer Cells. Journal of Nanobiotechnology, 12, 58.
http://dx.doi.org/10.1186/s12951-014-0058-0
[18]  Wang, W., Liu, Z., Sun, P., Fang, C., Fang, H., Wang, Y., Ji, J. and Chen, J. (2015) RGD Peptides-Conjugated Pluronic Triblock Copolymers Encapsulated with AP-2α Expression Plasmid for Targeting Gastric Cancer Therapy in Vitro and in Vivo. International Journal of Molecular Sciences, 16, 16263-16274.
http://dx.doi.org/10.3390/ijms160716263
[19]  Slowing, I.I., Vivero-Escoto, J.L., Wu, C.W. and Lin, V.S.-Y. (2008) Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Advanced Drug Delivery Reviews, 60, 1278-1288.
http://dx.doi.org/10.1016/j.addr.2008.03.012
[20]  Descalzo, A.B., Martínez-Máñez, R., Sancenon, F., Hoffmann, K. and Rurack, K. (2006) The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45, 5924-5948.
http://dx.doi.org/10.1002/anie.200600734
[21]  Angelos, S., Liong, M., Choi, E. and Zink, J.I. (2008) Mesoporous Silicate Materials as Substrates for Molecular Machines and Drug Delivery. Chemical Engineering Journal, 137, 4-13.
http://dx.doi.org/10.1016/j.cej.2007.07.074
[22]  Rosenholm, J.M., Sahlgren, C. and Linden, M. (2010) Towards Multifunctional, Targeted Drug Delivery Systems Using Mesoporous Silica Nanoparticles—Opportunities & Challenges. Nanoscale, 2, 1870-1883.
http://dx.doi.org/10.1039/c0nr00156b
[23]  Kim, C., Song, H.M., Cai, X., Yao, J., Wei, A. and Wang, L.V. (2011) In Vivo Photoacoustic Mapping of Lymphatic Systems with Plasmon-Resonant Nanostars. Journal of Materials Chemistry, 21, 2841-2844.
http://dx.doi.org/10.1039/c0jm04194g
[24]  Wang, S., Huang, P., Nie, L., Xing, R., Liu, D., Wang, Z., et al. (2013) Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars. Advanced Materials, 25, 3055-3061.
http://dx.doi.org/10.1002/adma.201204623
[25]  Chen, R., Wang, X., Yao, X., Zheng, X., Wang, J. and Jiang, X. (2013) Near-IR-Triggered Photothermal/Photodynamic Dual-Modality Therapy System via Chitosan Hybrid Nanospheres. Biomaterials, 34, 8314-8322.
http://dx.doi.org/10.1016/j.biomaterials.2013.07.034
[26]  Kiruba Daniel, S.C.G., Kumar, R., Sathish, V., Sivakumar, M., Sunitha, S. and Anitha Sironmani, T. (2011) Green Synthesis (Ocimum tenuiflorum) of Silver Nanoparticles and Toxicity Studies in Zebra Fish (Danio rerio) Model. International Journal of NanoScience and Nanotechnology, 2, 103-117.
[27]  King, E.J. and Garner, R.J. (1947) The Colorimetric Determination of Glucose Journal of Clinical Pathology, 1, 30.
http://dx.doi.org/10.1136/jcp.1.1.30
[28]  Bracken, J.S. and Klotz, I.M. (1953) A Simple Method for the Rapid Determination of Serum Albumin. American Journal of Clinical Pathology, 23, 1055-1058.
[29]  Beers Jr., R.F. and Sizer, I.W. (1952) A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase. Journal of Biological Chemistry, 195, 133-140.
[30]  Laemmli, U.K. (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227, 680-685.
http://dx.doi.org/10.1038/227680a0
[31]  Sahay, G., Alakhova, D.Y. and Kabanov, A.V. (2010) Endocytosis of Nanomedicines. Journal of Controlled Release, 145, 182-195.
http://dx.doi.org/10.1016/j.jconrel.2010.01.036
[32]  Minko, T. (2004) Drug Targeting to the Colon with Lectins and Neoglycoconjugates. Advanced Drug Delivery Reviews, 56, 491-509.
http://dx.doi.org/10.1016/j.addr.2003.10.017
[33]  Surh, Y.J. (2003) Cancer Chemoprevention with Dietary Phytochemicals. Nature Reviews Cancer, 3, 768-780.
http://dx.doi.org/10.1038/nrc1189
[34]  Aggarwal, B.B. and Shishodia, S. (2006) Molecular Targets of Dietary Agents for Prevention and Therapy of Cancer. Biochemical Pharmacology, 71, 1397-1421.
http://dx.doi.org/10.1016/j.bcp.2006.02.009
[35]  Hao, F., Kumar, S., Yadav, N. and Chandra, D. (2014) Neem Components as Potential Agents for Cancer Prevention and Treatment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1846, 247-257.
http://dx.doi.org/10.1016/j.bbcan.2014.07.002
[36]  Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2004) Rapid Synthesis of Au, Ag and Bimetallic Au Core-Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth. Journal of Colloid and Interface Science, 275, 496-502.
http://dx.doi.org/10.1016/j.jcis.2004.03.003
[37]  Tripathy, A., Raichur, A.M., Chandrasekaran, N., Prathna, T.C. and Mukherjee, A. (2009) Process Variables in Biomimetic Synthesis of Silver Nanoparticles by Aqueous Extract of Azadirachta indica (Neem) Leaves. Journal of Nanoparticle Research, 12, 237-246.
http://dx.doi.org/10.1007/s11051-009-9602-5
[38]  Kiruba Daniel, S.C.G., Anitha Sironmani, T., Tharmaraj, V. and Pitchumani, K. (2011) Synthesis and Characterization of Fluorophore Attached Silver Nanoparticles. Bulletin of Materials Science, 34, 639-643.
http://dx.doi.org/10.1007/s12034-011-0175-4
[39]  Nimroth Ananth, A., Kiruba Daniel, S.C.G., Anitha Sironmani, T. and Umapathi, S. (2011) PVA and BSA Stabilized Silver Nanoparticles Based Surface-Enhanced Plasmon Resonance Probes for Protein Detection. Colloids and Surfaces B: Biointerfaces, 85, 138-144.
http://dx.doi.org/10.1016/j.colsurfb.2011.02.012
[40]  Siddiqui, B.S., Afshan, F., Ghiasuddin, Faizi, S., Naqui, S.N.H. and Tariq, R.M. (2000) Two Insecticidal Tetranortriterpenoids from Azadirachta indica. Phytochemistry, 53, 371-376.
http://dx.doi.org/10.1016/S0031-9422(99)00548-8
[41]  Anitha Sironmani, T. and Kiruba Daniel, S.C.G. (2011) Silver Nanoparticles—Universal Multifunctional Nanoparticles for Bio Sensing, Imaging for Diagnostics and Targeted Drug Delivery for Therapeutic Applications. In: Kapetanovic, I.M., Ed., Drug Discovery and Development—Present and Future, InTech Publishers.
http://dx.doi.org/10.5772/27047
[42]  Mukhopadhyay, A., Banerjee, S., Stafford, L.J., Xia, C., Liu, M. and Aggarwal, B.B. (2002) Curcumin-Induced Suppression of Cell Proliferation Correlates with Down-Regulation of Cyclin D1 Expression and CDK4-Mediated Retinoblastoma Protein Phosphorylation. Oncogene, 21, 8852-8861.
http://dx.doi.org/10.1038/sj.onc.1206048
[43]  Bharti, A.C., Donato, N., Singh, S. and Aggarwal, B.B. (2003) Curcumin (Diferuloylmethane) Down-Regulates the Constitutive Activation of Nuclear Factor-κB and IκBα Kinase in Human Multiple Myeloma Cells, Leading to Suppression of Proliferation and Induction of Apoptosis. Blood, 101, 1053-1062.
http://dx.doi.org/10.1182/blood-2002-05-1320
[44]  Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T. and Yacaman, M.J. (2005) The Bactericidal Effect of Silver Nanoparticles. Nanotechnology, 16, 2346-2353.
http://dx.doi.org/10.1088/0957-4484/16/10/059
[45]  Lok, C., et al. (2006) Proteomic Analysis of the Most of Antibacterial Action of Silver Nanoparticles. Journal of Proteomic Research, 5, 916-924.
http://dx.doi.org/10.1021/pr0504079
[46]  Lin, Y.E., Vidic, R.D., Strout, J.E., McCartney, C.A. and Yu, V.L. (199) Inactivation of Mycobacterium avium by Copper and Silver Ions. Water Research, 32, 1997-2000.
[47]  Siva Kumar, V., Nagaraja, B.M., Shaihikala, V., Padmarri, A.H., Madharendra, S.S., Raju, B.D. and Rama Rao, K.S. (2003) Highly Efficient Ag/C Catalyst Prepared and Electrochemical Deposition Method in Controlling Microorganisms in Water. Journal of Molecular Catalysis A: Chemical, 223, 313-319.
http://dx.doi.org/10.1016/j.molcata.2003.09.047
[48]  Christensen, E. (1987) Multivariare Survival Analysis Using Cox’s Regression Model. Hepatology, 7, 1346-1358.
http://dx.doi.org/10.1002/hep.1840070628
[49]  Heys, S.D., Walker, L.G., Deehan, D.J. and Eremin, O.E. (1998) Serum Albumin: A Prognostic Indicator in Patients with Colorectal Cancer. Journal of the Royal College of Surgeons of Edinburgh, 43, 163-168.
[50]  Fleck, A., Hawker, F., Wallace, P.I., Raines, G., Trotter, J., Ledingham, I.M. and Calman, K.C. (1985) Increased Vascular Permeability: A Major Cause of Hypoalbuminaemia in Disease and Injury. The Lancet, 325, 781-784.
http://dx.doi.org/10.1016/S0140-6736(85)91447-3
[51]  Barber, M.D., Ross, J.A. and Fearon, K.C. (1999) Changes in Nutritional, Functional, and Inflammatory Markers in Advanced Pancreatic Cancer. Nutrition and Cancer, 35, 106-110.
http://dx.doi.org/10.1207/S15327914NC352_2
[52]  Oñate-Ocaña, L.F., Aiello-Crocifoglio, V., Gallardo-Rincón, D., Herrera-Goepfert, R., Brom-Valladares, R., Carrillo, J.F., Cervera, E. and Mohar-Betancourt, A. (2007) Serum Albumin as a Significant Prognostic Factor for Patients with Gastric Carcinoma. Annals of Surgical Oncology, 14, 381-389.
http://dx.doi.org/10.1245/s10434-006-9093-x
[53]  Lis, C.G., Grutsch, J.F., Vashi, P.G. and Lammersfeld, C.A. (2003) Is Serum Albumin an Independent Predictor of Survival in Patients with Breast Cancer? Journal of Parenteral & Enteral Nutrition, 27, 10-15.
http://dx.doi.org/10.1177/014860710302700110
[54]  Broom, I., et al. (1992) Interleukin 2 Therapy in Cancer: Identification of Responders. British Journal of Cancer, 66, 1185-1187.
http://dx.doi.org/10.1038/bjc.1992.433
[55]  Simpson, W.G., Heys, S.D., Whiting, P.H., Eremin, O. and Broom, I. (1995) Acute Phase Proteins and Recombinant IL-2 Therapy: Prediction of Response and Survival in Patients with Colorectal Cancer. Clinical & Experimental Immunology, 99, 143-147.
http://dx.doi.org/10.1111/j.1365-2249.1995.tb05524.x
[56]  Deehan, D.J., Heys, S.D., Simpson, W.G., Herriot, R., Broom, J. and Eremin, O. (1994) Correlation of Serum Cytokine and Acute Phase Reactant Levels with Alterations in Weight and Serum Albumin in Patients Receiving Immunotherapy with Recombinant IL-2. Clinical & Experimental Immunology, 95, 366-372.
http://dx.doi.org/10.1111/j.1365-2249.1994.tb07005.x
[57]  Lai, W.W., Yang, J.S., Lai, K.C., Kuo, C.L., Hsu, C.K., Wang, C.K., et al. (2009) Rhein Induced Apoptosis through the Endoplasmic Reticulum Stress, Caspase- and Mitochondria-Dependent Pathways in SCC-4 Human Tongue Squamous Cancer Cells. In Vivo, 23, 309-316.
[58]  Ip, S.W., Weng, Y.S., Lin, S.Y., Mei, D., Tang, N.Y., Su, C.C. and Chung, J.G. (2007) The Role of Ca2+ on Rhein-Induced Apoptosis in Human Cervical Cancer Ca Ski Cells. Anticancer Research, 27, 379-389.
[59]  Standtman, E.R. and Berlett, B.S. (1997) Reactive Oxygen-Mediated Protein Oxidation in Aging and Disease. Chemical Research in Toxicology, 10, 485-494.
http://dx.doi.org/10.1021/tx960133r
[60]  Butterfield, D.A. and Kanski, J. (2001) Brain Protein Oxidation in Age-Related Neurodegenerative Disorders That Are Associated with Aggregated Proteins. Mechanisms of Ageing and Development, 122, 945-962.
http://dx.doi.org/10.1016/S0047-6374(01)00249-4
[61]  Poli, G., Leonarduzzi, G., Biasi, F. and Chiarpotto, E. (2004) Oxidative Stress and Cell Signaling. Current Medical Chemistry, 11, 1163-1182.
http://dx.doi.org/10.2174/0929867043365323
[62]  Poon, H.F., Calabrese, V., Scapagnini, G. and Butterfield, D.A. (2004) Free Radicals and Brain Aging. Clinics in Geriatric Medicine, 20, 329-359.
http://dx.doi.org/10.1016/j.cger.2004.02.005
[63]  Evans, M.D., Dizdaroglu, M. and Cooke, M.S. (2004) Oxidative DNA Damage and Disease: Induction, Repair and Significance. Mutation Research/Reviews in Mutation Research, 567, 1-61.
http://dx.doi.org/10.1016/j.mrrev.2003.11.001
[64]  Crawford, D.R. (1999) Regulation of Mammalian Gene Expression by Reactive Oxygen Species. In: Gilbert, D.L. and Colton, C.A., Eds., Reactive Oxygen Species in Biological Systems: An Interdisciplinary Approach, Kluwer Academic Publishers, New York, 155-171.
[65]  Shi, H., Hudson, L.G. and Liu, K.J. (2004) Oxidative Stress and Apoptosis in Metal Ion-Induced Carcinogenesis. Free Radical Biology and Medicine, 37, 582-593.
http://dx.doi.org/10.1016/j.freeradbiomed.2004.03.012
[66]  Bodamyali, T., Stevens, C.R., Blake, D.R. and Winyard, P.G. (2000) Reactive Oxygen/Nitrogen Species and Acute Inflammation: A Physiological Process. In: Winyard, P.G., Blake, D.R. and Evans, C.H., Eds., Free Radicals and Inflammation, Springer, Basel, 11-16.
http://dx.doi.org/10.1007/978-3-0348-8482-2_2
[67]  Fu, P.P., Xia, Q., Sun, X. and Yu, H.T. (2012) Phototoxicity and Environmental Transformation of Polycyclic Aromatic Hydrocarbons (PAHs)—Light-Induced Reactive Oxygen Species, Lipid Peroxidation, and DNA Damage. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 30, 1-41.
http://dx.doi.org/10.1080/10590501.2012.653887
[68]  Xia, Q., Boudreau, M.D., Zhou, Y.T., Yin, J.-J. and Fu, P.P. (2011) UVB Photoirradiation of Aloe Vera—Formation of Free Radicals, Singlet Oxygen, Superoxide, and Induction of Lipid Peroxidation. Journal of Food & Drug Analysis, 19, 396-402.
[69]  Xia, Q., Chiang, H.M., Zhou, Y.T., et al. (2012) Phototoxicity of Kava—Formation of Reactive Oxygen Species Leading to Lipid Peroxidation and DNA Damage. The American Journal of Chinese Medicine, 40, 1271-1288.
http://dx.doi.org/10.1142/S0192415X12500942
[70]  Xia, Q., Yin, J.J., Cherng, S.H., et al. (2006) UVA Photoirradiation of Retinyl Palmitate—Formation of Singlet Oxygen and Superoxide, and Their Role in Induction of Lipid Peroxidation. Toxicology Letters, 163, 30-43.
http://dx.doi.org/10.1016/j.toxlet.2005.09.010
[71]  Xia, Q., Yin, J.J., Fu, P.P. and Boudreau, M.D. (2007) Photo-Irradiation of Aloe Vera by UVA—Formation of Free Radicals, Singlet Oxygen, Superoxide, and Induction of Lipid Peroxidation. Toxicology Letters, 168, 165-175.
http://dx.doi.org/10.1016/j.toxlet.2006.11.015
[72]  Fu, P.P., Xia, Q.S., Hwang, H.-M., Ray, P.C. and Yu, H.T. (2014) Mechanisms of Nanotoxicity: Generation of Reactive Oxygen Species. Journal of Food and Drug Analysis, 22, 64-75.
http://dx.doi.org/10.1016/j.jfda.2014.01.005
[73]  Nardone, G., Holicky, E.L., Uhl, J.R., Sabatino, L., Staibano, S., Rocco, A., Colantuoni, V., Manzo, B.A., Romano, M., Budillon, G., Cockerill III, F.R. and Miller, L.J. (2001) In Vivo and In Vitro Studies of Cytosolic Phospholipase A2 Expression in Helicobacter pylori Infection. Infection and Immunity, 69, 5857-5863.
http://dx.doi.org/10.1128/IAI.69.9.5857-5863.2001
[74]  Lupulescu, A. (1991) Vitamin C Inhibits DNA, RNA and Protein Synthesis in Epithelial Neoplastic Cells. International Journal for Vitamin and Nutrition Research, 61, 125-129.
[75]  Lupulescu, A. (1992) Ultrastructure and Cell Surface Studies of Cancer Cells Following Vitamin C Administration. Experimental and Toxicologic Pathology, 44, 3-9.
[76]  Waring, A.J. and Schorah, C.J. (1998) Transport of Ascorbic Acid in Gastric Epithelial Cells in Vitro. Clinica Chimica Acta, 275, 137-149.
http://dx.doi.org/10.1016/S0009-8981(98)00079-5
[77]  Agus, D.B., Vera, J.C. and Golde, D.W. (1999) Stromal Cell Oxidation: A Mechanism by Which Tumors Obtain Vitamin C. Cancer Research, 59, 4555-4558.
[78]  Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., Richardson, A.L., Polyak, K., Tubo, R. and Weinberg, R.A. (2007) Mesenchymal Stem Cells within Tumour Stroma Promote Breast Cancer Metastasis. Nature, 449, 557-563.
http://dx.doi.org/10.1038/nature06188
[79]  Vermeulen, L., De Sousa E Melo, F., van der Heijden, M., Cameron, K., de Jong, J.H., Borovski, T., Tuynman, J.B., Todaro, M., Merz, C., Rodermond, H., Sprick, M.R., Kemper, K., Richel, D.J., Stassi, G. and Medema, J.P. (2010) Wnt Activity Defines Colon Cancer Stem Cells and Is Regulated by the Microenvironment. Nature Cell Biology, 12, 468-476.
http://dx.doi.org/10.1038/ncb2048
[80]  Yauch, R.L., Gould, S.E., Scales, S.J., Tang, T., Tian, H., Ahn, C.P., Marshall, D., Fu, L., Januario, T., Kallop, D., Nannini-Pepe, M., Kotkow, K., Marsters, J, C., Rubin, L.L. and de Sauvage, F.J. (2008) A Paracrine Requirement for Hedgehog Signalling in Cancer. Nature, 455, 406-410.
http://dx.doi.org/10.1038/nature07275
[81]  Dang, C.V. and Semenza, G.L. (1999) Oncogenic Alterations of Metabolism. Trends in Biochemical Sciences, 24, 68-72.
http://dx.doi.org/10.1016/S0968-0004(98)01344-9
[82]  di Chiro, G., Brooks, R.A., Patronas, N.T., Bairamian, D., Kornblith, P.L., Smith, B.H., Mansi, L. and Barker, J. (1984) Issues in the in Vivo Measurement of Glucose Metabolism of Human Central Nervous System Tumors. Annuals of Neurology, 15, S138-S146.
http://dx.doi.org/10.1002/ana.410150727
[83]  Padma, M.V., Said, S., Jacobs, M., Hwang, D.R., Dunigan, K., Satter, M., et al. (2003) Prediction of Pathology and Survival by FDG PET in Gliomas. Journal of Neuro-Oncology, 64, 227-237.
http://dx.doi.org/10.1023/A:1025665820001
[84]  Spence, A.M., Muzi, M., Graham, M.M., O’Sullivan, F., Link, J.M., Lewellen, T.K., et al. (2002) 2-[(18)F]Fluoro-2-Deoxyglucose and Glucose Uptake in Malignant Gliomas before and after Radiotherapy: Correlation with Outcome. Clinical Cancer Research, 8, 971-979.
[85]  Weber, W.A. (2006) Positron Emission Tomography as an Imaging Biomarker. Journal Clinical Oncology, 24, 3282-3292.
http://dx.doi.org/10.1200/JCO.2006.06.6068
[86]  Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M. and Telser, J. (2007) Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84.
http://dx.doi.org/10.1016/j.biocel.2006.07.001
[87]  Kim, B. and Lee, B.M. (1997) Oxidative Stress to DNA, Protein, and Antioxidant Enzymes (Superoxide Dismutase and Catalase) in Rats Treated with Benzo(a)pyrene. Cancer Letters, 113, 205-212.
http://dx.doi.org/10.1016/S0304-3835(97)04610-7
[88]  Yuan, X., Zhou, Y., Wang, W., Li, J., Xie, G., Zhao, Y., Xu, D. and Shen, L. (2013) Activation of TLR4 Signaling Promotes Gastric Cancer Progression by Inducing Mitochondrial ROS Production. Cell Death & Disease, 4, e794.
http://dx.doi.org/10.1038/cddis.2013.334
[89]  Sun, L., Niu, L., Zhu, X., Hao, J., Wang, P. and Wang, H. (2012) Antitumour Effects of a Protease Inhibitor, Nelfinavir, in Hepatocellular Carcinoma Cancer Cells. Journal of Chemotherapy, 24, 161-166.
http://dx.doi.org/10.1179/1973947812Y.0000000011
[90]  Bagchi, D., Bagchi, M., Hassoun, E.A. and Stohs, S.J. (1996) Cadmium-Induced Excretion of Urinary Lipid Metabolites, DNA Damage, Glutathione Depletion, and Hepatic Lipid Peroxidation in Sprague-Dawley Rats. Biological Trace Element Research, 52, 143-154.
http://dx.doi.org/10.1007/BF02789456
[91]  Bagchi, D., Bagchi, M., Stohs, S.J., Das, D.K., Ray, S.D., Kuszynski, C.A., Joshi, S.S. and Pruess, H.G. (2000) Free Radicals and Grape Seed Proanthocyanidin Extract: Importance in Human Health and Disease Prevention. Toxicology, 148, 187-197.
http://dx.doi.org/10.1016/S0300-483X(00)00210-9
[92]  Trush, M.A. and Kensler, T.W. (1991) An Overview of the Relationship between Oxidative Stress and Chemical Carcinogenesis. Free Radical Biology and Medicine, 10, 201-209.
http://dx.doi.org/10.1016/0891-5849(91)90077-G
[93]  Schreck, R., Meier, B., Männel, D.N., Dröge, W. and Baeuerle, P.A. (1992) Dithiocarbamates as Potent Inhibitors of Nuclear Factor Kappa B Activation in Intact Cells. Journal of Experimental Medicine, 175, 1181-1194.
http://dx.doi.org/10.1084/jem.175.5.1181
[94]  Winrow, V.R., Winyard, P.G., Morris, C.J. and Blake, D.R. (1993) Free Radicals in Inflammation: Second Messengers and Mediators of Tissue Destruction. British Medical Bulletin, 49, 506-522.
[95]  Mohamed, M.M. and Sloane, B.F. (2006) Cysteine Cathepsins: Multifunctional Enzymes in Cancer. Nature Reviews Cancer, 6, 764-775.
http://dx.doi.org/10.1038/nrc1949
[96]  Murphy, D.J., Junttila, M.R., Pouyet, L., Karnezis, A., Shchors, K., Bui, D.A., Brown-Swigart, L., Johnson, L. and Evan, G.I. (2008) Distinct Thresholds Govern Myc’s Biological Output in Vivo. Cancer Cell, 14, 447-457.
http://dx.doi.org/10.1016/j.ccr.2008.10.018
[97]  Kessenbrock, K., Plasks, V. and Werb, Z. (2010) Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell, 141, 52-67.
http://dx.doi.org/10.1016/j.cell.2010.03.015
[98]  López-Otín, C. and Hunter, T. (2010) The Regulatory Crosstalk between Kinases and Proteases in Cancer. Nature Reviews Cancer, 10, 278-292.
http://dx.doi.org/10.1038/nrc2823
[99]  Tang, L. and Han, X. (2013) The Urokinase Plasminogen Activator System in Breast Cancer Invasion and Metastasis. Biomedicine & Pharmacotherapy, 67, 179-182.
http://dx.doi.org/10.1016/j.biopha.2012.10.003
[100]  Paralkar, V.M., Vail, A.L., Grasser, W.A., et al. (1998) Cloning and Characterization of a Novel Member of the Transforming Growth Factor-β/Bone Morphogenetic Protein Family. The Journal of Biological Chemistry, 273, 13760-13767.
http://dx.doi.org/10.1074/jbc.273.22.13760
[101]  Welsh, J.B., Sapinoso, L.M., Kern, S.G., et al. (2003) Large-Scale Delineation of Secreted Protein Biomarkers Overexpressed in Cancer Tissue and Serum. Proceedings of the National Academy of Sciences of the United states of America, 100, 3410-3415.
http://dx.doi.org/10.1073/pnas.0530278100
[102]  Buckhaults, P., Rago, C., St. Croix, B., et al. (2001) Secreted and Cell Surface Genes Expressed in Benign and Malignant Colorectal Tumors. Cancer Research, 61, 6996-7001.
[103]  Choi, E.H., Kim, J., Kim, J.H., Kim, S.Y., Song, E.Y., Kim, J.W., Kim, S.Y., Yeom, Y., Kim, I.-H. and Lee, H.G. (2009) Upregulation of the Cysteine Protease Inhibitor, Cystatin SN, Contributes to Cell Proliferation and Cathepsin Inhibition in Gastric Cancer. Clinica Chimica Acta, 406, 45-51.
http://dx.doi.org/10.1016/j.cca.2009.05.008
[104]  Stenman, U.H. (1990) Tumour-Associated Trypsin Inhibitor and Tumour-Associated Trypsin. Scandinavian Journal of Clinical and Laboratory Investigation, 50, 93-101.
http://dx.doi.org/10.1080/00365519009085805
[105]  Paju, A., Vartiainen, J., Haglund, C., Itkonen, O., von Bo-guslawski, K., Leminen, A., Wahlström, T. and Stenman, U.H. (2004) Expression of Trypsinogen-1, Trypsinogen-2, and Tumor-Associated Trypsin Inhibitor in Ovarian Cancer: Prognostic Study on Tissue and Serum. Clinical Cancer Research, 10, 4761-4768.
http://dx.doi.org/10.1158/1078-0432.CCR-0204-03
[106]  Lee, Y.-C., Pan, H.-W., Peng, S.-Y., Lai, P.-L., Kuo, W.-S., Ou, Y.-H. and Hsu, H.-C. (2007) Overexpression of Tumour-Associated Trypsin Inhibitor (TATI) Enhances Tumour Growth and Is Associated with Portal Vein Invasion, Early Recurrence and a Stage-Independent Prognostic Factor of Hepatocellular Carcinoma. European Journal of Cancer, 43, 736-744.
http://dx.doi.org/10.1016/j.ejca.2006.11.020
[107]  Freeman, T.C., Playford, R.J., Quinn, C., Beardshall, K., Poulter, L., Young, J. and Calam, J. (1990) Pancreatic Secretory Trypsin Inhibitor in Gastrointestinal Mucosa and Gastric Juice. Gut, 31, 1318-1323.
http://dx.doi.org/10.1136/gut.31.11.1318
[108]  Playford, R.J., Batten, J.J., Freeman, T.C., Beardshall, K., Vesey, D.A., Fenn, G.C., Baron, J.H. and Calam, J. (1991) Gastric Output of Pancreatic Secretory Trypsin Inhibitor Is Increased by Misoprostol. Gut, 32, 1396-1400.
http://dx.doi.org/10.1136/gut.32.11.1396
[109]  Marchbank, T., Chinery, R., Hanby, A.M., Poulsom, R., Elia, G. and Playford, R.J. (1996) Distribution and Expression of Pancreatic Secretory Trypsin Inhibitor and Its Possible Role in Epithelial Restitution. The American Journal of Pathology, 148, 715-722.
[110]  Marchbank, T., Freeman, T.C. and Playford, R.J. (1998) Human Pancreatic Secretory Trypsin Inhibitor: Distribution, Actions and Possible Role in Mucosal Integrity and Repair. Digestion, 59, 167-174.
http://dx.doi.org/10.1159/000007485
[111]  Wiksten, J.P., Lundin, J., Nordling, S., Kokkola, A., Stenman, U.H. and Haglund, C. (2005) High Tissue Expression of Tumour-Associated Trypsin Inhibitor (TATI) Associates with a More Favourable Prognosis in Gastric Cancer. Histopathology, 46, 380-388.
http://dx.doi.org/10.1111/j.1365-2559.2005.02073.x
[112]  Darmoul, D., Marie, J.C., Devaud, H., Gratio, V. and Laburthe, M. (2001) Initiation of Human Colon Cancer Cell Proliferation by Trypsin Acting at Protease-Activated Receptor-2. British Journal of Cancer, 85, 772-779.
http://dx.doi.org/10.1054/bjoc.2001.1976
[113]  Miyata, S., Koshikawa, N., Higashi, S., Miyagi, Y., Nagashima, Y., Yanoma, S., Kato, Y., Yasumitsu, H. and Miyazaki, K. (1999) Expression of Trypsin in Human Cancer Cell Lines and Cancer Tissues and Its Tight Binding to Soluble Form of Alzheimer Amyloid Precursor Protein in Culture. The Journal of Biochemistry, 125, 1067-1076.
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022388
[114]  Vogelstein, B. and Kinzler, K.W. (1993) The Multistep Nature of Cancer. Trends in Genetics, 9, 138-141.
http://dx.doi.org/10.1016/0168-9525(93)90209-Z
[115]  Beckman, R.A. and Loeb, L.A. (2006) Efficiency of Carcinogenesis with and without a Mutator Mutation. Proceedings of the National Academy of Sciences of the United states of America, 103, 14140-14145.
http://dx.doi.org/10.1073/pnas.0606271103
[116]  Miyake, H., Hara, I., Arakawa, S. and Kamidono, S. (2000) Stress Protein GRP78 Prevents Apoptosis Induced by Calcium Ionophore, Ionomycin, but Not by Glycosylation Inhibitor, Tunicamycin, in Human Prostate Cancer Cells. Journal of Cellular Biochemistry, 77, 396-408.
http://dx.doi.org/10.1002/(SICI)1097-4644(20000601)77:3<396::AID-JCB5>3.0.CO;2-5
[117]  Bang, Y.J., Van Cutsem, E., Feyereislova, A., et al. (2010) Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. The Lancet, 376, 687-697.
http://dx.doi.org/10.1016/S0140-6736(10)61121-X
[118]  Yan, B., Yau, E.X., Bte Omar, S.S., et al. (2010) A Study of HER2 Gene Amplification and Protein Expression in Gastric Cancer. Journal of Clinical Pathology, 63, 839-842.
http://dx.doi.org/10.1136/jcp.2010.076570
[119]  Bhatt, A.N., Mathur, R., Farooque, A., Verma, A. and Dwarakanath, B.S. (2010) Cancer Biomarkers—Current Perspectives. The Indian Journal of Medical Research, 132, 129-149.
[120]  Han, S.S., Chung, S.T., Robertson, D.A., Ranjan, D. and Bondada, S. (1999) Curcumin Causes the Growth Arrest and Apoptosis of B Cell Lymphoma by Downregulation of egr-1, C-myc, Bcl-XL, NF-κB, and p53. Clinical Immunology, 93, 152-161.
http://dx.doi.org/10.1006/clim.1999.4769
[121]  Chirwa, N., Govender, D., Ndimba, B., Lotz, Z., Tyler, M., Panieri, E., Kahn, D. and Mall, A.S. (2012), A 40 - 50 kDa Glycoprotein Associated with Mucus Is Identified as α-1-Acid Glycoprotein in Carcinoma of the Stomach. Journal of Cancer, 3, 83-92.
http://dx.doi.org/10.7150/jca.3737
[122]  Yeo, M., Kim, D.K., Park, H.J., Cho, S.W., Cheong, J.Y. and Lee, K.J. (2008) Retraction: Blockage of Intracellular Proton Extrusion with Proton Pump Inhibitor Induces Apoptosis in Gastric Cancer. Cancer Science, 99, 185.
[123]  Basque, J.R., Chénard, M., Chailler, P. and Ménard, D. (2001) Gastric Cancer Cell Lines as Models to Study Human Digestive Functions. Journal of Cellular Biochemistry, 81, 241-251.
http://dx.doi.org/10.1002/1097-4644(20010501)81:2<241::AID-JCB1039>3.0.CO;2-B
[124]  Chailler, P., Beaulieu, J.F. and Ménard, D. (2012) Isolation and Functional Studies of Human Fetal Gastric Epithelium in Primary Culture. In: Mitry, R.R. and Hughes, R.D., Eds., Human Cell Culture Protocols, Humana Press, New York, 137-155.
http://dx.doi.org/10.1007/978-1-61779-367-7_10
[125]  Basque, J.R. and Ménard, D. (2000) Establishment of Culture Systems of Human Gastric Epithelium for the Study of Pepsinogen and Gastric Lipase Synthesis and Secretion. Microscopy Research and Technique, 48, 293-302.
http://dx.doi.org/10.1002/(SICI)1097-0029(20000301)48:5<293::AID-JEMT6>3.0.CO;2-A
[126]  El-Deeb, N.M., El-Sherbiny, I.M., El-Aassara, M.R. and Hafez, E.E. (2015) Novel Trend in Colon Cancer Therapy Using Silver Na-noparticles Synthesized by Honey Bee. Journal of Nanomedicine & Nanotechnology, 6, 265.
[127]  Bhol, K.C., Alroy, J. and Schechter, P.J. (2004) Anti-Inflammatory Effect of Topical Nanocrystalline Silver Cream on Allergic Contact Dermatitis in a Guinea Pig Model. Clinical and Experimental Dermatology, 29, 282-287.
http://dx.doi.org/10.1111/j.1365-2230.2004.01515.x
[128]  Bhol, K.C. and Schechter, P.J. (2007) Effects of Nanocrystalline Silver (NPI 32101) in a Rat Model of Ulcerative Colitis. Digestive Diseases and Sciences, 52, 2732-2742.
http://dx.doi.org/10.1007/s10620-006-9738-4
[129]  Zucker, S. and Vacirca, J. (2004) Role of Matrix Metalloproteinases (MMPs) in Colorectal Cancer. Cancer and Metastasis Reviews, 23, 101-117.
http://dx.doi.org/10.1023/A:1025867130437
[130]  Bettegowda, C., Sausen, M.R., Leary, J., Kinde, I.Y., Wang, Y., et al. (2014) Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Science Translational Medicine, 6, 224ra24.
http://dx.doi.org/10.1126/scitranslmed.3007094
[131]  Cross, C.E., Halliwell, B., Borish, E.T., Pryor, W.A., Ames, B.N., Saul, R.L., McCord, J.M. and Harman, D. (1987) Oxygen Radical and Human Disease. Annuals of Internal Medicine, 107, 526-545.
http://dx.doi.org/10.7326/0003-4819-107-4-526
[132]  Sun, Y. (1990) Free Radicals, Antioxidant Enzymes and Carcinogenesis. Free Radical Biology & Medicine, 8, 583-599.
[133]  Casado, A., Torre, R., Fernhdez, M.E.L., Carrascosa, D., Casado, M.C. and Ramirez, M.V. (1995) Superoxide Dismutase and Catalase Blood Levels in Patients with Malignant Diseases. Cancer Letters, 93, l87-192.
http://dx.doi.org/10.1016/0304-3835(95)03808-A
[134]  Azad, M.B., Chen, Y. and Gibson, S.B. (2009) Regulation of Autophagy by Reactive Oxygen Species (ROS): Implications for Cancer Progression and Treatment. Antioxidants & Redox Signaling, 11, 777-790.
http://dx.doi.org/10.1089/ars.2008.2270
[135]  Ortega, A.L., Mena, S. and Estrela, J.M. (2011) Glutathione in Cancer Cell Death. Cancers, 3, 1285-1310.
http://dx.doi.org/10.3390/cancers3011285
[136]  Kemik, O., Kemik, A., Sümer, A., Almali, N., Gurluler, E., Gures, N., Purisa, S., Adas, G., Dogan, Y. and Tuzun, S. (2013) The relationship between serum tumor-associated trypsin inhibitor levels and clinicopathological parameters in patients with gastric cancer. European Review in Medical Pharmacological Science, 17, 2923-2928.
[137]  Eid, M.A., Lewis, R.W., Abdel-Mageed, A.B. and Kumar, M.V. (2002) Reduced Response of Prostate Cancer Cells to TRAIL Is Modulated by NFkappaB-Mediated Inhibition of Caspases and Bid Activation. International Journal of Oncology, 21, 111-117.
[138]  Choi, H.S., Seo, H.S., Kim, J.H., Um, J.Y., Shin, Y.C. and Ko, S.G. (2012) Ethanol Extract of Paeonia Suffruticosa Andrews (PSE) Induced AGS Human Gastric Cancer Cell Apoptosis via fas-Dependent Apoptosis and MDM2-p53 Pathways. Journal of Biomedical Sciences, 19, 82.
http://dx.doi.org/10.1186/1423-0127-19-82
[139]  Mouria, M., Gukovskaya, A.S., Jung, Y., Buechler, P., Hines, O.J., Reber, H.A. and Pandol, S.J. (2002) Food-Derived Polyphenols Inhibit Pancreatic Cancer Growth through Mitochondrial Cytochrome C Release and Apoptosis. International Journal of Cancer, 98, 761-769.
http://dx.doi.org/10.1002/ijc.10202
[140]  Han, M.H., Lee, W.S., Jung, J.H., Jeong, J.H., Park, C., Kim, H.J., Kim, G., Jung, J.M., Kwon, T.K., Kim, G.Y., et al. (2013) Polyphenols Isolated from Allium cepa L. Induces Apoptosis by Suppressing IAP-1 through Inhibiting PI3K/Akt Signaling Pathways in Human Leukemic Cells. Food and Chemical Toxicology, 62, 382-389.
http://dx.doi.org/10.1016/j.fct.2013.08.085
[141]  Burk, D. and Woods, M. (1963) Hydrogen Peroxide, Catalase, Glutathione Peroxidase, Quinones, Nordihydroguaiaretic Acid, and Phosphopyridine Nucleotides in Relation to X-Ray Action on Cancer Cells. Radiation Research Supplement, 3, 212-246.
http://dx.doi.org/10.2307/3583686
[142]  Mehta, K., Pantazis, P., McQueen, T. and Aggarwal, B.B. (1997) Anti-proliferative Effect of Curcumin (Diferuloylmethane) against Human Breast Tumor Cell Lines. Anti-Cancer Drugs, 8, 470-481.
http://dx.doi.org/10.1097/00001813-199706000-00010
[143]  Mulik, R.S., Monkkonen, J., Juvonen, R.O., Mahadik, K.R. and Paradkar, R. (2012) ApoE3 Mediated Polymeric Nanoparticles Containing Curcumin: Apoptosis Induced in Vitro Anti-Cancer Activity against Neuroblastoma Cells. International Journal of Pharmaceutics, 437, 29-41.
http://dx.doi.org/10.1016/j.ijpharm.2012.07.062
[144]  Farokhzad, O.C., et al. (2006) Targeted Nanoparticle-Aptamer Bioconjugates for Cancer Chemotherapy in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 103, 6315-6320.
http://dx.doi.org/10.1073/pnas.0601755103
[145]  Raffaghello, L., Zuccari, G., Carosio, R., Orienti, I. and Montaldo, P.G. (2006) In Vitro and In Vivo Antitumor Activity of the Novel Derivatized Polyvinyl Alcohol-Based Polymer P10(4). Clinical Cancer Research, 12, 3485-3493.
http://dx.doi.org/10.1158/1078-0432.CCR-05-2318
[146]  Huang, X. and El-Sayed, M.A. (2010) Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. Journal of Advanced Research, 1, 13-28.
http://dx.doi.org/10.1016/j.jare.2010.02.002
[147]  Moorthi, C. and Kathiresan, K. (2013) Curcumin-Piperine/Curcumin-Quercetin/Curcumin-Silibinin Dual Drug-Loaded Nanoparticulate Combination Therapy: A Novel Approach to Target and Treat Multidrug-Resistant Cancers. Journal of Medical Hypotheses and Ideas, 7, 15-20.
http://dx.doi.org/10.1016/j.jmhi.2012.10.005
[148]  Kiruba Daniel, S.C.G., Tharmaraj, V., Anitha Sironmani, T. and Pitchumani, K. (2010) Toxicity and Immunological Activity of Silver Nanoparticles. Applied Clay Science, 48, 547-551.
http://dx.doi.org/10.1016/j.clay.2010.03.001
[149]  Kiruba Daniel, S.C.G., Ayyappan, S., Philiphan, N.J.P., Sivakumar, M., Menaga, G. and Anitha Sironmani, T. (2011) Green Synthesis and Transfer of Silver Nanoparticles in a Food Chain through Chiranamous larva to Zebra Fish—A New Approach for Therapeutics. International Journal of Nanoscience and Nanotechnology, 2, 159-169.
[150]  Anitha Sironmani, T. (2014) Comparison of Nanocarriers for Gene Delivery and Nanosensing Using Montmorillonite, Silver Nanoparticles and Multiwalled Carbon Nanotubes. Applied Clay Science, 103, 55-61.
http://dx.doi.org/10.1016/j.clay.2014.11.004

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133