全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Benzamide Derivatives as New Influenza A Nucleoprotein Inhibitors

DOI: 10.4236/ojmc.2016.63004, PP. 43-50

Keywords: Benzamides, Nucleoprotein, Anti-Influenza, NP Inhibitors, Nucleozin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Virus nucleoprotein (NP) is an emerging target for drug development for Influenza. We designed benzamide derivatives as new inhibitors of NP that demonstrate good potency in blocking influenza A. Screening revealed that compound 39 was the most potent molecule in the series, exhibiting IC50 values of 0.46 and 0.27 μM in blocking the replication of H3N2 (A/HK/8/68) and (A/WSN/33) influenza A viral strains. The observed inhibition of viral replication correlated well with cytopathic protection. Furthermore, based on computational analysis and fluorescence microscopy, it was determined that compound 39 inhibited nuclear accumulation by targeting influenza A viral nucleoproteins. Finally, the rodent pharmacokinetic profile of compound 32 displayed half-life of greater than 4 hours and bioavailability greater than 20%, suggesting this class of molecules had drug-like properties.

References

[1]  Cox, N.J. and Subbarao, K. (2000) Global Epidemiology of Influenza: Past and Present. Annual Review of Medicine, 51, 407-421.
http://dx.doi.org/10.1146/annurev.med.51.1.407
[2]  Palese, P. and Young, J.F. (2010) Structural Basis of Preexisting Immunity to the 2009 H1n1 Pandemic Influenza Virus. Science, 215, 1468-1474.
http://dx.doi.org/10.1126/science.7038875
[3]  Ghedin, E., Sengamalay, N.A., Shumway, M., Zaborsky, J., Feldblyum, T., Subbu, V., Spiro, D.J., Sitz, J., Koo, H., Bolotov, P., Dernovoy, D., Tatusova, T., Bao, Y.M., St George, K., Taylor, J., Lipman, D.J., Fraser, C.M., Taubenberger, J.K. and Salzberg, S.L. (2005) Large-Scale Sequencing of Human Influenza Reveals the Dynamic Nature of Viral Genome Evolution. Nature, 437, 1162-1166.
http://dx.doi.org/10.1038/nature04239
[4]  Wilson, J.C. and von Itzstein, M. (2003) Recent Strategies in the Search for New Anti-Influenza Therapies. Current Drug Targets, 4, 389-408.
http://dx.doi.org/10.2174/1389450033491019
[5]  Gao, R.B., Cao, B., Hu, Y.W., Feng, Z.J., Wang, D.Y., Hu, W.F., Chen, J., Jie, Z.J., Qiu, H.B., Xu, K., Xu, X.W., Lu, H.Z., Zhu, W.F., Gao, Z.C., Xiang, N.J., Shen, Y.Z., He, B.Z., Gu, Y., Zhang, Z.Y., Yang, Y., Zhao, X., Zhou, L., Li, X.D., Zou, S.M., Zhang, Y., Li, X.Y., Yang, L., Guo, J.F., Dong, J., Li, Q., Dong, L.B., Zhu, Y., Bai, T., Wang, S.W., Hao, P., Yang, W.Z., Zhang, Y.P., Han, J., Yu, H.J., Li, D.X., Gao, G.F., Wu, G.Z., Wang, Y., Yuan, Z.H. and Shu, Y.L. (2013) Human Infection with a Novel Avian-origin Influenza A (H7N9) Virus. The New England Journal of Medicine, 368, 1888-1897.
http://dx.doi.org/10.1056/NEJMoa1304459
[6]  Du, J., Cross, T.A. and Zhou,H.X. (2012) Recent Progress in Structure-based Anti-influenza Drug Design. Drug Discovery Today, 17, 1111-1120.
http://dx.doi.org/10.1016/j.drudis.2012.06.002
[7]  Bright, R.A., Shay, D.K., Shu, B., Cox, N.J. and Klimov, A.I. (2006) Adamantane Resistance among Influenza A Viruses Isolated Early during the 2005-2006 Influenza Season in the United States. AMA-Journal of the American Medical Association, 295, 891-894.
http://dx.doi.org/10.1001/jama.295.8.joc60020
[8]  Deyde, V.M., Xu, X.Y., Bright, R.A., Shaw, M., Smith, C.B., Zhang, Y., Shu, Y.L., Gubareva, L.V., Cox, N.J. and Klimov, A.I. (2007) Surveillance of Resistance to Adamantanes among Influenza A (H3N2) and A (H1N1) Viruses Isolated Worldwide. The Journal of Infectious Diseases, 196, 249-257.
http://dx.doi.org/10.1086/518936
[9]  Gubareva, L., Okomo-Adhiambo, M., Deyde, V., Sheu, T.G., Garten, R., Smith, C., Barnes, J., Myrick, A., Hillman, M., Shaw, M., Bridges, C., Klimov, A. and Cox, N. (2009) Update: Drug Susceptibility of Swine-Origin. JAMA- Journal of the American Medical Association, 301, 2086.
[10]  Carr, J., Ives, J., Kelly, L., Lambkin, R., Oxford, J., Mendel, D., Tai, L. and Roberts, N. (2002) Influenza Virus Carrying Neuraminidase with Reduced Sensitivity to Oseltamivir Carboxylate Has Altered Properties in Vitro and Is Compromised for Infectivity and Replicative Ability in Vivo. Antiviral Research, 54, 79-88.
http://dx.doi.org/10.1016/S0166-3542(01)00215-7
[11]  Ives, J.A.L., Carr, J.A., Mendel, D.B., Tai, C.Y., Lambkin, R., Kelly, L., Oxford, J.S., Hayden, F.G. and Roberts, N.A. (2002) The H274Y Mutation in the Influenza A/H1N1 Neuraminidase Active Site Following Oseltamivir Phosphate Treatment Leave Virus Severely Compromised both in Vitro and in Vivo. Antiviral Research, 55, 307-317.
http://dx.doi.org/10.1016/S0166-3542(02)00053-0
[12]  Mitrasinovic, P.M. (2010) Advances in the Structure-Based Design of the Influenza A Neuraminidase Inhibitors. Current Drug Targets, 11, 315-326.
http://dx.doi.org/10.2174/138945010790711932
[13]  Regoes, R.R. and Bonhoeffer, S. (2006) Emergence of Drug-Resistant Influenza Virus: Population Dynamical Considerations 2009 Pandemic Influenza: An Inconvenient Mutation. Science, 312, 389-391.
http://dx.doi.org/10.1126/science.1122947
[14]  Layne, S.P., Monto, A.S. and Taubenberger, J.K. (2009) Pandemic Influenza: An Inconvenient Mutation. Science, 323, 1560-1561.
http://dx.doi.org/10.1126/science.323.5921.1560
[15]  Huang, T.S., Palese, P. and Krystal, M. (1990) Determination of Influenza Virus Proteins Required for Genome Replication. Journal of Virology, 64, 5669.
[16]  Portela, A. and Digard, P. (2002) The Influenza Virus Nucleoprotein: A Multifunctional RNA-Binding Protein Pivotal to Virus Replication. Journal of General Virology, 83, 723-734.
http://dx.doi.org/10.1099/0022-1317-83-4-723
[17]  Gong, J.Z., Fang, H., Li, M.Y., Liu, Y., Yang, K.H., Liu, Y.Z. and Xu, W.F. (2009) Potential Targets and Their Relevant Inhibitors in Anti-Influenza Fields. Current Medicinal Chemistry, 16, 3716-3739.
http://dx.doi.org/10.2174/092986709789104984
[18]  Hagiwara, K., Kondoh, Y., Ueda, A., Yamada, K., Goto, H., Watanabe, T., Nakata, T., Osada, H. and Aida Y. (2010) Discovery of Novel Antiviral Agents Directed Against the Influenza A Virus Nucleoprotein Using Photo-Cross-Linked Chemical Arrays. Biochemical and Biophysical Research Communications, 394, 721-727.
http://dx.doi.org/10.1016/j.bbrc.2010.03.058
[19]  Fedichev, P., Timakhov, R., Pyrkov, T., Getmantsev, E. and Vinnik, A. (2011) Structure-Based Drug Design of a New Chemical Class of Small Molecules Active against Influenza A Nucleoprotein in Vitro and in Vivo. PLoS Currents, 3, RRN1253.
http://dx.doi.org/10.1371/currents.rrn1253
[20]  Shen, Y.-F., Chen, Y.-H., Chu, S.-Y., Lin, M.-I., Hsu, H.-T., Wu, P.-Y., Wu, C.-J., Liu, H.-W., Lin, F.-Y., Lin, G., Hsu, P.-H., Yang, A.-S., Cheng, Y.-S.E., Wu, Y.-T., Wong, C.-H. and Tsai, M.-D. (2011) E339 ... R416 Salt Bridge of Nucleoprotein as a Feasible Target for Influenza Virus Inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 108, 16515-16520.
http://dx.doi.org/10.1073/pnas.1113107108
[21]  Lejal, N., Tarus, B., Bouguyon, E., Chenavas, S., Bertho, N., Delmas, B., Ruigrok, R.W.H., Di Primo, C. and Slama-Schwok, A. (2013) Structure-Based Discovery of the Novel Antiviral Properties of Naproxen against the Nucleoprotein of Influenza A Virus. Antimicrobial Agents and Chemotherapy, 57, 2231-2242.
http://dx.doi.org/10.1128/AAC.02335-12
[22]  Kao, R.Y., Yang, D., Lau, L.-S., Tsui, W.H.W., Hu, L., Dai, J., Chan, M.-P., Chan, C.-M., Wang, P., Zheng, B.-J., Sun, J., Huang, J.-D., Madar, J., Chen, G., Chen, H., Guan, Y. and Yuen, K.-Y. (2010) Identification of Influenza A Nucleoprotein as an Antiviral Target. Nature Biotechnology, 28, 600-605.
http://dx.doi.org/10.1038/nbt.1638
[23]  Su, C.-Y., Cheng, T.-J.R., Lin, M.-I., Wang, S.-Y., Huang, W.-I., Lin-Chu, S.-Y., Chen, Y.-H., Wu, C.-Y., Lai, M.M.C., Cheng, W.-C., Wu, Y.-T., Tsai, M.-D., Cheng, Y.-S.E. and Wong, C.-H. (2010) High-Throughput Identification of Compounds Targeting Influenza RNA-Dependent RNA Polymerase Activity. Proceedings of the National Academy of Sciences of the United States of America, 107, 19151-19156.
http://dx.doi.org/10.1073/pnas.1013592107
[24]  Gerritz, S.W., Cianci, C., Kim, S., Pearce, B.C., Deminie, C., Discotto, L., McAuliffe, B., Minassian, B.F., Shi, S., Zhu, S., Zhai, W., Pendri, A., Li, G., Poss, M.A., Edavettal, S., McDonnell, P.A., Lewis, H.A., Maskos, K., Moertl, M., Kiefersauer, R., Steinbacher, S., Baldwin, E.T., Metzler, W., Bryson, J., Healy, M.D., Philip, T., Zoeckler, M., Schartman, R., Sinz, M., Leyva-Grado, V.H., Hoffmann, H.-H., Langley, D.R., Meanwell, N.A. and Krystal, M. (2011) Inhibition of Influenza Virus Replication via Small Molecules That Induce the Formation of Higher-Order Nucleoprotein Oligomers. Proceedings of the National Academy of Sciences of the United States of America, 108, 15366-15371.
http://dx.doi.org/10.1073/pnas.1107906108
[25]  Cheng, H., Wan, J., Lin, M.-I., Liu, Y., Lu, X., Liu, J., Xu, Y., Chen, J., Tu, Z., Cheng, Y.-S.E. and Ding, K. (2012) Design, Synthesis, and in Vitro Biological Evaluation of 1 H-1, 2, 3-Triazole-4-carboxamide Derivatives as New Anti-influenza A Agents Targeting Virus Nucleoprotein. Journal of Medicinal Chemistry, 55, 2144-2153.
http://dx.doi.org/10.1021/jm2013503

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133