全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mitochondrial Respiration Is Associated with Alloxan-Induced Mitochondrial Permeability Transition

DOI: 10.4236/jbpc.2016.74008, PP. 87-97

Keywords: Mitochondria, Permeability, Respiration, Alloxan, Redox Cycle, Radical

Full-Text   Cite this paper   Add to My Lib

Abstract:

We previously showed that increased mitochondrial inner membrane permeability which is known as mitochondrial permeability transition (MPT) is triggered by adding succinate in the presence of the diabetogenic agent alloxan. Here, our aim was to investigate whether mitochondrial respiration is associated with alloxan-induced MPT. After mitochondria isolated from rat liver were incubated with alloxan at 37°C for 5 min, the addition of succinate immediately triggered the MPT in the presence of rotenone. However, little or no induction occurred at incubation temperatures below 25°C. Malate/glutamate also triggered MPT by alloxan in the absence of rotenone. In mitochondrial suspensions containing alloxan, succinate accelerated oxygen consumption that was completely inhibited by cyanide. These results suggest that mitochondrial respiration is associated with the alloxan-induced MPT. Alloxan radical production was investigated using ESR spectroscopy. Mitochondria incubated with succinate and alloxan elicited low signal intensity (radical formation) that increased significantly in the presence of cyanide. When the incubation of alloxan with mitochondria after the addition of succinate, a little intensity of the signal was observed, but it was remarkably increased after the addition of cyanide. Ubiquinone analogues inhibited the MPT induction. These results suggest that the initiation of MPT is associated with alloxan redox cycling via an electron transfer process at a quinone-binding site in respiratory mitochondria.

References

[1]  Tsujimoto, Y. and Shimizu, S. (2007) Role of the Mitochondrial Membrane Permeability Transition in Cell Death. Apoptosis, 12, 835-840.
http://dx.doi.org/10.1007/s10495-006-0525-7
[2]  Green, D.R. and Reed, J.C. (1998) Mitochondria and Apoptosis. Science, 281, 1309-1312.
http://dx.doi.org/10.1126/science.281.5381.1309
[3]  Di Lisa, F., Carpi, A., Giorgio, V. and Bernardi, P. (2011) The Mitochondrial Permeability Transition Pore and Cyclophilin D in Cardioprotection. Biochimica et Biophysica Acta, 1813, 1316-1322.
http://dx.doi.org/10.1016/j.bbamcr.2011.01.031
[4]  Ichimura, T., Ito, M., Takahashi, K., Oyama, K. and Sakurai, K. (2011) Involvement of Mitochondrial Swelling in Cytochrome c Release from Mitochondria Treated with Calcium and Alloxan. Journal of Biophysical Chemistry, 2, 10-18.
http://dx.doi.org/10.4236/jbpc.2011.21002
[5]  Ruiz, L.M., Jensen, E.L., Bustos, R.I., Argüelloa, G., Gutierrez-Garcia, R., González, M., Hernández, C., Paredes, R., Simon, F., Riedel, C., Ferrick, D. and Elorza, A.A. (2014) Adaptive Responses of Mitochondria to Mild Copper Deprivation Involve Changes in Morphology, OXPHOS Remodeling and Bioenergetics. Journal of Cellular Physiology, 229, 607-619.
http://dx.doi.org/10.1002/jcp.24484
[6]  Bernardi, P. (1999) Mitochondrial Transport of Cations: Channels, Exchangers, and Permeability Transition. Physiological Reviews, 79, 1127-1155.
[7]  Penzo, D., Tagliapietra, C., Colonna, R., Petronilli, V. and Bernardi, P. (2002) Effects of Fatty Acids on Mitochondria: Implications for Cell Death. Biochimica et Biophysica Acta, 1555, 160-165.
http://dx.doi.org/10.1016/S0005-2728(02)00272-4
[8]  Sakurai, K., Katoh, M., Someno, K. and Fujimoto, Y. (2001) Apoptosis and Mitochondrial Damage in INS-1 Cells Treated with Alloxan. Biological and Pharmaceutical Bulletin, 24, 876-882.
http://dx.doi.org/10.1248/bpb.24.876
[9]  Sakurai, K., Katoh, M. and Fujimoto, Y. (2001) Alloxan-Induced Mitochondrial Permeability Transition Triggered by Calcium, Thiol Oxidation, and Matrix ATP. The Journal of Biological Chemistry, 276, 26942-26946.
http://dx.doi.org/10.1074/jbc.M102029200
[10]  Constantinescu, A.A., Abbas, M., Kassem, M., Gleizes, C., Kreutter, G., Schini-Kerth, V., Mitrea, I.L., Toti, F. and Kessler, L. (2016) Differential Influence of Tacrolimus and Sirolimus on Mitochondrial-Dependent Signaling for Apoptosis in Pancreatic Cells. Molecular and Cellular Biochemistry, 418, 91-102.
http://dx.doi.org/10.1007/s11010-016-2736-8
[11]  Pastorino, J.G., Chen, S.T., Tafani, M., Snyder, J.W. and Farber J.L. (1998) The Overexpression of Bax Produces Cell Death upon Induction of the Mitochondrial Permeability Transition. The Journal of Biological Chemistry, 273, 7770-7775.
http://dx.doi.org/10.1074/jbc.273.13.7770
[12]  Fontaine, E., Ichas, F. and Bernardi, P. (1998) A Ubiquinone-Binding Site Regulates the Mitochondrial Permeability Transition Pore. The Journal of Biological Chemistry, 273, 25734-25740.
http://dx.doi.org/10.1074/jbc.273.40.25734
[13]  Walter, L., Nogueira, V., Leverve, X., Heitz, M.P., Bernardi, P. and Fontaine, E. (2000) Three Classes of Ubiquinone Analogs Regulate the Mitochondrial Permeability Transition Pore through a Common Site. The Journal of Biological Chemistry,275, 29521-29527.
http://dx.doi.org/10.1074/jbc.M004128200
[14]  Scullion, S.M., Hahn, C., Tyka, K., Flatt, P.R., McClenaghan, N.H., Lenzen, S. and Gurgul-Convey, E. (2016) Improved Antioxidative Defence Protects Insulin-Producing Cells against Homocysteine Toxicity. Chemico-Biological Interactions, 256, 37-46.
http://dx.doi.org/10.1016/j.cbi.2016.06.019
[15]  Malaisse, W.J., Malaisse-Lagae, F., Sener, A. and Pipeleers, D.S. (1982) Determinants of the Selective Toxicity of Alloxan to the Pancreatic B Cell. Proceedings of the National Academy Sciences of the United States of America, 79, 927-930.
http://dx.doi.org/10.1073/pnas.79.3.927
[16]  Jorns, A., Tiedge, M., Lenzen, S. and Munday, R. (1999) Effect of Superoxide Dismutase, Catalase, Chelating Agents, and Free Radical Scavengers on the Toxicity of Alloxan to Isolated Pancreatic Islets in Vitro. Free Radical Biology and Medicine, 36, 1300-1304.
http://dx.doi.org/10.1016/S0891-5849(98)00325-6
[17]  Treulen, F., Uribe, P., Boguen, R. and Villegas, J.V. (2015) Mitochondrial Permeability Transition Increases Reactive Oxygen Species Production and Induces DNA Fragmentation in Human Spermatozoa. Human Reproduction, 30, 767-776.
http://dx.doi.org/10.1093/humrep/dev015
[18]  Katoh, M., Sakurai, K. and Fujimoto, Y. (2002) Alloxan Radical-Induced Generation of Reactive Oxygen Species in the Reaction System of Alloxan with Ascorbate. Yakugaku Zasshi, 122, 831-839.
http://dx.doi.org/10.1248/yakushi.122.831
[19]  Sakurai, K., Nabeyama, A. and Fujimoto, Y. (2006) Ascorbate-Mediated Iron Release from Ferritin in the Presence of Alloxan. BioMetals, 19, 323-333.
http://dx.doi.org/10.1007/s10534-005-1300-x
[20]  Kushnareva, Y.E. and Sokolove, P.M. (2000) Prooxidants Open Both the Mitochondrial Permeability Transition Pore and a Low-Conductance Channel in the Inner Mitochondrial Membrane. Archives of Biochemistry and Biophysics, 376, 377-388.
http://dx.doi.org/10.1006/abbi.2000.1730
[21]  Halestrap, A.P., Pereira, G.C. and Pasdois, P. (2015) The Role of Hexokinase in Cardioprotection-Mechanism and Potential for Translation. British Journal of Pharmacology, 172, 2085-2100.
http://dx.doi.org/10.1111/bph.12899
[22]  Sakurai, K., Stoyanovsky, D.A., Fujimoto, Y. and Cederbaum A.I. (2000) Mitochondrial Permeability Transition Induced by 1-Hydroxyethyl Radical. Free Radical Biology and Medicine, 28, 273-280.
http://dx.doi.org/10.1016/S0891-5849(99)00236-1
[23]  Chance, B. and Williams, G.R. (1955) A Simple and Rapid Assay of Oxidative Phosphorylation. Nature, 175, 1120-1121.
http://dx.doi.org/10.1038/1751120a0
[24]  Sugioka, K., Nakano, M., Totsune-Nakano, H., Minakami, H., Tero-Kubota, S. and Ikegami, Y. (1988) Mechanism of O2 Generation in Reduction and Oxidation Cycle of Ubiquinones in a Model of Mitochondrial Electron Transport Systems. Biochimica et Biophysica Acta, 936, 377-385.
http://dx.doi.org/10.1016/0005-2728(88)90014-X
[25]  Bianchet, M.A., Faig, M. and Amzel, L.M. (2004) Structure and Mechanism of NAD[P]H: Quinone Acceptor Oxidoreductases (NQO). Methods in Enzymology, 382, 144-174.
http://dx.doi.org/10.1016/S0076-6879(04)82009-3
[26]  Li, J., Ma, X., Yu, W., Lou, Z., Mu, D., Wang, Y., Shen, B. and Qi, S. (2012) Reperfusion Promotes Mitochondrial Dysfunction Following Focal Cerebral Ischemia in Rats. PLoS ONE, 7, e46498.
http://dx.doi.org/10.1371/journal.pone.0046498
[27]  Costantini, P., Belzacq, A.S., Vieira, H.L., Larochette, N., dePablo, M.A., Zamzami, N., Susin, S.A., Brenner, C. and Kroemer, G. (2000) Oxidation of a Critical Thiol Residue of the Adenine Nucleotide Translocator Enforces Bcl-2-Independent Permeability Transition Pore Opening and Apoptosis. Oncogene, 19, 307-314.
http://dx.doi.org/10.1038/sj.onc.1203299
[28]  Colell, A., García-Ruiz, C., Mari, M. and Fernández-Checa, J.C. (2004) Mitochondrial Permeability Transition Induced by Reactive Oxygen Species Is Independent of Cholesterol-Regulated Membrane Fluidity. FEBS Letters, 560, 63-68.
http://dx.doi.org/10.1016/S0014-5793(04)00071-7
[29]  Lass, A., Agarwal, S. and Sohal, R.S. (1997) Mitochondrial Ubiquinone Homologues, Superoxide Radical Generation, and Longevity in Different Mammalian Species. The Journal of Biological Chemistry, 272, 19199-19204.
http://dx.doi.org/10.1074/jbc.272.31.19199

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133