全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2016 

Vanadium Oxide/Graphene Nanoplatelet as a Cathode Material for Mg-Ion Battery

DOI: 10.4236/graphene.2016.54015, PP. 178-188

Keywords: Magnesium Batteries, Vanadium Oxide, Graphene, Conductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of the present work is to introduce a high performance cathode for magnesium-ion batteries. A simple ball mill process is employed to synthesize (V2O5)1-x (Graphene Nanoplatelets (GNP))x nanocomposite, (where x = 0, 5, 10, 15, 20 and 25 wt.% GNP). The synthesized samples are characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) technique, impedance spectroscopy, cyclic voltammetry and charge-discharge test. The maximum conductivity of the investigated samples was found to be 6 × 10-1 S/cm for optimum composite film (25 wt% GNP) at room temperature. Room temperature rechargeable magnesium batteries are constructed from Mg as anode material, (V2O5)1-x(GNP)x as a cathode material and the simple non-aqueous electrolyte based MgNO3·6H2O. Mg/V2O5 cells employing as-prepared electrolyte exhibit initial discharge capacity ~100 mAhg-1 while Mg/(V2O5/GNP (x = 25t.%)) cathode produces a lower initial capacity of ~90 mAhg-1. The high initial discharge capacity of V2O5 can be attributed to the presence of a large (001) interlayer spacing (~11.53 A) for facile Mg+ insertion/extraction.

References

[1]  Kouji, T., Yunpeng, G., Yukari, K., Takafumi, Y. and Hidenori, T. (2016) Rechargeable Mg Battery Cathode TiS3 with d-p Orbital Hybridized Electronic Structures. Applied Physics Express, 9, Article ID: 011801.
[2]  Su, S.J., Huang, Z.G., NuLi, Y., Tuerxun, F., Yang, J. and Wang, J.L. (2015) A Novel Rechargeable Battery with a Magnesium Anode, a Titanium Dioxide Cathode, and a Magnesium Borohydride/Tetraglyme Electrolyte. Chemical Communications, 51, 2641-2644.
http://dx.doi.org/10.1039/C4CC08774G
[3]  Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M. and Levi, E. (2000) Prototype Systems for Rechargeable Magnesium Batteries. Nature, 107, 724-727.
http://dx.doi.org/10.1038/35037553
[4]  Zhang, M., MacRae, A.C., Liu, H. and Meng, Y.S. (2016) Communication—Investigation of Anatase-TiO2 as an Efficient Electrode Material for Magnesium-Ion Batteries. Journal of the Electrochemical Society, 163, A2368-A2370. http://dx.doi.org/10.1149/2.1091610jes
[5]  Tao, Z., Xu, L., Gou, X., Chen, J. and Yuan, H. (2004) TiS2 Nanotubes as the Cathode Materials of Mg-Ion Batteries. Chemical Communications, 18, 2080-2081.
http://dx.doi.org/10.1039/b403855j
[6]  Hsu, C.-J., Chou, C.-Y., Yang, C.-H., Lee, T.-C. and Chang, J.-K. (2015) MoS2/Graphene Cathodes for Reversibly Storing Mg2+ and Mg2+/Li+ in Rechargeable Magnesium-Anode Batteries. Chemical Communications, 52, 1701-1704.
http://dx.doi.org/10.1039/C5CC09407K
[7]  Sheha, E. and Bassyouni, A. (2016) Structure, Thermal and Electrical Properties of Germanium Oxide/Graphene Nano-Composite Cathode for Magnesium. Energy and Environment Focus, 5, 1-6.
[8]  Niya, Sa., Kinnibrugh, T.L., Wang, H., Gautam, G.S., Chapman, K.W., et al. (2016) Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V2O5·nH2O Xerogel Material. Chemistry of Materials, 28, 2962-2969. http://dx.doi.org/10.1021/acs.chemmater.6b00026
[9]  Lu, W., Karina, A., Per, E.V., Ann, M.S. and Fride, V.-B. (2016) Sponge-Like Porous Manganese (II, III) Oxide as a Highly Efficient Cathode Material for Rechargeable Magnesium Ion Batteries. Chemistry of Materils, 28, 6459-6470. http://dx.doi.org/10.1021/acs.chemmater.6b01016
[10]  Laubach, S., Schmidt, P., Thipen, A., Fernandez-Madrigal, F., Wu, Q. and Jaegermann, W. (2007) Theoretical and Experimental Determination of the Electronic Structure of V2O5, Reduced V2O5-x and Sodium Intercalated NaV2O5. Chemical Physics, 9, 2564-2576.
[11]  Su, D. and Wang, G. (2013) Single-Crystalline Bilayered V2O5 Nanobelts for High-Capacity Sodium-Ion Batteries. ACS Nano, 7, 11218-11226. http://dx.doi.org/10.1021/nn405014d
[12]  Gershinsky, G., Yoo, H.D., Gofer, Y. and Aurbach, D. (2013) Electrochemical and Spectroscopic Analysis of Mg2+ Intercalation into Thin Film Electrodes of Layered Oxides: V2O5 and MoO3. Langmuir, 29, 10964-19672.
http://dx.doi.org/10.1021/la402391f
[13]  Chiku, M., Takeda, H., Matsumura, S., Higuchi, E. and Inoue, H. (2015) Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery. ACS Applied Materials & Interfaces, 7, 24385-24389. http://dx.doi.org/10.1021/acsami.5b06420
[14]  Yu, R., Zhang, C., Meng, Q., Chen, Z., Liu, H. and Guo, Z. (2013) Facile Synthesis of Hierarchical Networks Composed of Highly Interconnected V2O5 Nanosheets Assembled on Carbon Nanotubes and Their Superior Lithium Storage Properties. ACS Applied Materials & Interfaces, 5, 12394-12399. http://dx.doi.org/10.1021/am4033444
[15]  Liu, H. and Yang, W. (2011) Ultralong Single Crystalline V2O5 Nanowire/Graphene Composite Fabricated by a Facile Green Approach and Its Lithium Storage Behavior. Energy & Environmental Science, 4, 4000-4008. http://dx.doi.org/10.1039/c1ee01353j
[16]  Du, X., Huang, G., Qin, Y. and Wang, L. (2015) Solvothermal Synthesis of GO/V2O5 Composites as a Cathode Material for Rechargeable Magnesium Batteries. RSC Advances, 5, 76352-76355.
http://dx.doi.org/10.1039/C5RA15284D
[17]  Venkatesan, A., KrishnaChandar, N., Arjunan, S., Marimuthu, K.N., MohanKumar, R. and Jayavel, R. (2013) Structural, Morphological and Optical Properties of Highly Monodispersed PEG Capped V2O5 Nanoparticles Synthesized through a Non-Aqueous Route. Materials Letters, 91, 228-231. http://dx.doi.org/10.1016/j.matlet.2012.09.117
[18]  Chen, D., Yi, R., Chen, S., Xu, T., Gordin, M.L., Lv, D. and Wang, D. (2014) Solvothermal Synthesis of V2O5/Graphene Nanocomposites for High Performance Lithium Ion Batteries. Materials Science and Engineering: B, 185, 7-12.
http://dx.doi.org/10.1016/j.mseb.2014.01.015
[19]  Karteri, I., Karatas, S. and Yakuphanoglu, F. (2014) Electrical Characterization of Graphene Oxide and Organic Dielectric Layers Based on Thin Film Transistor. Applied Surface Science, 318, 74-78. http://dx.doi.org/10.1016/j.apsusc.2014.01.013
[20]  Chand, N., Rai, N., Agrawal, S.L. and Patel, S.K. (2011) Morphology, Thermal, Electrical and Electrochemical Stability of Nano Aluminium-Oxide-Filled Polyvinyl Alcohol Composite gel Electrolyte. Bulletin of Materials Science, 34, 1297-1304. http://dx.doi.org/10.1007/s12034-011-0318-7
[21]  Gamal, R., Sheha, E., Shash, N. and El-Shaarawy, M.G. (2015) Effect of Tetraethylene Glycol Dimethyl Ether on Electrical, Structural and Thermal Properties of PVA-Based Polymer Electrolyte for Magnesium Battery. Acta Physica Polonica A. 127, 803-810.
http://dx.doi.org/10.12693/APhysPolA.127.803
[22]  Fan, Y., Wang, L., Li, J., Li, J., Sun, S., Chen, F., Chen, L. and Jiang, W. (2010) Preparation and Electrical Properties of Graphene Nanosheet/Al2O3 Composites. Capron, 48, 1743- 1749.
http://dx.doi.org/10.1016/j.carbon.2010.01.017
[23]  Pang, H., Chen, T., Zhang, G., Zeng, B. and Li, Z.M. (2010) An Electrically Conducting Polymer/Graphene Composite with a Very Low Percolation Threshold. Materials Letters, 64, 2226-2229. http://dx.doi.org/10.1016/j.matlet.2010.07.001

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133