全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biosynthesis of Zinc Oxide Nanoparticles Using Ixora Coccinea Leaf Extract—A Green Approach

DOI: 10.4236/ojsta.2016.51001, PP. 1-14

Keywords: Zinc Oxide Nanoparticles, Ixora coccinea, Green Synthesis, XRD, DLS, EDX

Full-Text   Cite this paper   Add to My Lib

Abstract:

Green synthesis of metal oxide nanoparticles using plant extract is a promising alternative to traditional method of chemical synthesis. In this paper, we report the synthesis of nanostructured zinc oxide particles by biological method. Highly stable and spherical zinc oxide nanoparticles are produced by using zinc acetate and Ixora coccinea leaf extract. Formation of zinc oxide nanoparticles has been confirmed by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering analysis (DLS), zetapotential study and Scanning Electron Microscope with the Energy Dispersive X-ray studies (EDX). Dynamic light scattering analysis shows average particle size of 145.1 nm whereas high zeta potential value confirms the stability of formed zinc oxide nanoparticles. The Scanning Electron Microscope reveals spherical morphology of nanoparticles and Energy Dispersive X-ray analysis confirms the formation of highly pure zinc oxide nanoparticles. The zinc oxide nanoparticles from Ixora coccinea leaves are expected to have applications in biomedical, cosmetic industries, biotechnology, sensors, medical, catalysis, optical device, coatings, drug delivery and water remediation, and also may be applied for electronic and magneto-electric devices. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production.

References

[1]  Daniel, M.C. and Astruc, D. (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 104, 293-346.
http//dx.doi.org/10.1021/cr030698+
[2]  Bogunia-Kubik, K. and Sugisaka, M. (2002) From Molecular Biology to Nanotechnology and Nanomedicine. BioSystems, 65, 123-138.
http//dx.doi.org/10.1016/S0303-2647(02)00010-2
[3]  Zharov, V.P., Kim, J.W., Curiel, D.T and Everts, M. (2005) Self-Assembling Nanoclusters in Living Systems: Application for Integrated Photothermal Nanodiagnostics and Nanotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 1, 326-345.
http//dx.doi.org/10.1016/j.nano.2005.10.006
[4]  Long, T.C., Saleh, C.N., Tilton, R.D., Lowry, G.V. and Veronesi, B. (2006) Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Microglia (Bv2): Implications for Nanoparticle Neurotoxicity. Environmental Science & Technology, 40, 4346-4352.
http//dx.doi.org/10.1021/es060589n
[5]  Magrez, S., Kasas, V., Salicio, N., Pasquier, J., Seo, W., Celio, M., Catsicas, S., Schwaller, B. and Forro, L. (2006) Cellular Toxicity of Carbon-Based Nanomaterials. Nano Letters, 6, 1121-1125.
http//dx.doi.org/10.1021/nl060162e
[6]  Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic Potential of Materials at the Nano Level. Science, 311, 622-627.
http//dx.doi.org/10.1126/science.1114397
[7]  Dagdeviren, C., Hwang, S.W., Su, Y., Kim, S., Cheng, H., Gur, O., Haney, R., Omenetto, F. G., Huang, Y. and Rogers, J.A. (2013) Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO. Small, 9, 3398-3404.
http//dx.doi.org/10.1002/smll.201300146
[8]  Wang, L., Kang, Y., Liu, X., Zhang, S., Huang, W. and Wang, S. (2012) ZnO Nanorod Gas Sensor for Ethanol Detection. Sensors & Actuators, B: Chemical, 162, 237-243.
http//dx.doi.org/10.1016/j.snb.2011.12.073
[9]  Cross, S.E., Innes, B., Roberts, M.S., Tsuzuki, T., Robertson, T.A. and McCormick, P. (2007) Human Skin Penetration of Sunscreen Nanoparticles: In-Vitro Assessment of a Novel Micronized Zinc Oxide Formulation. Skin Pharmacology and Physiology, 20, 148-154.
http//dx.doi.org/10.1159/000098701
[10]  Zhou, J., Xu, N. and Wang, Z.L. (2006) Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Advanced Materials, 18, 2432-2435.
http//dx.doi.org/10.1002/adma.200600200
[11]  Rasmussen, J.W., Martinez, E., Louka, P. and Wingett, D.G. (2010) Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications. Expert Opinion on Drug Delivery, 7, 1063-1077.
http//dx.doi.org/10.1517/17425247.2010.502560
[12]  Raveendran, P., Fu, J. and Wallen, S.L. (2003) Completely “Green” Synthesis and Stabilization of Metal Nanoparticles. Journal of the American Chemical Society, 125, 13940-13941.
http//dx.doi.org/10.1021/ja029267j
[13]  Narayanan, K.B. and Sakthivel, N. (2010) Biological Synthesis of Metal Nanoparticles by Microbes. Advances in Colloid and Interface Science, 156, 1-13.
http//dx.doi.org/10.1016/j.cis.2010.02.001
[14]  Narayanan, S., Sathy, B.N., Mony, U., Koyakutty, M., Nair, S.V. and Menon, D. (2012) Biocompatible Magnetite/Gold Nanohybrid Contrast Agents via Green Chemistry for MRI and CT Bioimaging. ACS Applied Materials & Interfaces, 4, 251-260.
http//dx.doi.org/10.1021/am201311c
[15]  Govindaraju, K., Khaleel, B.S., Ganesh, K.V. and Singaravelu, G. (2008) Silver, Gold and Bimetallic Nanoparticles Production Using Single-Cell Protein (Spirulina platensis) Geitler. Journal of Materials Science, 43, 5115–5122.
http//dx.doi.org/10.1007/s10853-008-2745-4
[16]  Lengke, M.F., Fleet, M.E. and Southam, G. (2007) Biosynthesis of Silver Nanoparticles by Filamentous Cyanobacteria from a Silver(I) Nitrate Complex. Langmuir, 23, 2694-2699.
http//dx.doi.org/10.1021/la0613124
[17]  Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S.K. and Paknikar, K.M. (2002) Microbial Synthesis of Semiconductor CdS Nanoparticles, Their Characterization, and Their Use in the Fabrication of an Ideal Diode. Biotechnology and Bioengineering, 78, 583-588.
http//dx.doi.org/10.1002/bit.10233
[18]  Rautaray, D., Ahmad, A. and Sastry, M. (2003) Biosynthesis of CaCO3 Crystals of Complex Morphology Using a Fungus and an Actinomycete. Journal of the American Chemical Society, 125, 14656-14657.
http//dx.doi.org/10.1021/ja0374877
[19]  Lobiak, E.V., Shlyakhova, E.V., Bulusheva, L.G., Plyusnin, P.E., Shubin, Yu.V. and Okotrub, A.V. (2015) Ni–Mo and Co–Mo Alloy Nanoparticles for Catalytic Chemical Vapor Deposition Synthesis of Carbon Nanotubes. Journal of Alloys and Compounds, 621, 351-356.
http//dx.doi.org/10.1016/j.jallcom.2014.09.220
[20]  Cho, J.M., Song, J.K. and Park, S.M. (2009) Characterization of ZnO Nanoparticles Grown by Laser Ablation of a Zn Target in Neat Water. Bulletin of the Korean Chemical Society, 30, 1616-1618.
http//dx.doi.org/10.5012/bkcs.2009.30.7.1616
[21]  Wang, C., Shen, E., Wang, E., Gao, L., Kang, Z., Tian, C., Lan, Y. and Zhang, C. (2006) Controlable Synthesis of ZnO Nanoparticles via a Surfactant Assisted Alcohol Thermal Process at Low Temperature. Current Applied Physics, 6, 499-502.
[22]  Lin, C. and Li, Y. (2009) Synthesis of ZnO Nanowires by Thermal Decomposition of Zinc Acetate Dihydrate. Materials Chemistry and Physics, 113, 334-337.
http//dx.doi.org/10.1016/j.matchemphys.2008.07.070
[23]  Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S. and Ali, E.S. (2016) Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry, 19, 211-216.
http//dx.doi.org/10.1016/j.proche.2016.03.095
[24]  Kharissova, O.V., Rasika, H.V. Kharisov, D.B.I., Pérez, B.O. and Jiménez Pérez, V.M. (2013) The Greener Synthesis of Nanoparticles. Trends in Biotechnology, 31, 240-248.
http//dx.doi.org/10.1016/j.tibtech.2013.01.003
[25]  Kumar, B., Smita, K., Cumbal, L. and Debut, A. (2014) Sacha inchi (Plukenetia volubilis L.) Shell Biomass for Synthesis of Silver Nanocatalyst. Journal of Saudi Chemical Society, in Press.
http//dx.doi.org/10.1016/j.jscs.2014.03.005
[26]  Haverkamp, R.G. and Marshall, A.T. (2009) The Mechanism of Metal Nanoparticle Formation in Plants: Limits on Accumulation. Journal of Nanoparticle Research, 11, 1453-1463.
http//dx.doi.org/10.1007/s11051-008-9533-6
[27]  Kumar, B., Smita, K., Cumbal, L. and Debut, A. (2014) Biogenic Synthesis of Iron Oxide Nanoparticles for 2-Arylbenzimidazole Fabrication. Journal of Saudi Chemical Society, 18, 364-369.
http//dx.doi.org/10.1016/j.jscs.2014.01.003
[28]  Saifuddin, N., Wong, C.W. and Yasumira, A.A.N. (2009) Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation. E-Journal of Chemistry, 6, 61-70.
http//dx.doi.org/10.1155/2009/734264
[29]  Appierot, G., Lipovsky, A., Dror, R., Perkas, N., Nitzan, Y., Lubart, R. and Gedanken, A. (2009) Enhanced Antibacterial Actiwity of Nanocrystalline ZnO Due to Increased ROS- Mediated Cell Injury. Advanced Functional Materials, 19, 842-852.
http//dx.doi.org/10.1002/adfm.200801081
[30]  Sharma, D., Rajput, J., Kaith, B., Kaur, S.M. and Sharma, S. (2010) Synthesis of ZnO Nanoparticles and Study of Their Antibacterial and Antifungal Properties. Thin Solid Films, 519, 1224-1229.
http//dx.doi.org/10.1016/j.tsf.2010.08.073
[31]  Sangeetha, G., Rajeshwari, S. and Venckatesh, R. (2011) Green Synthesis of Zinc Oxide Nanoparticles by Aloe Barbadensis Miller Leaf Extract: Structure and Optical Properties. Materials Research Bulletin, 46, 2560-2566.
http//dx.doi.org/10.1016/j.materresbull.2011.07.046
[32]  Qu, J., Yuan, X., Wang, X. and Shao, P. (2011) Zinc Accumulation and Synthesis of ZnO Nanoparticles Using Physalis alkekengi L. Environmental Pollution, 159, 1783-1788.
http//dx.doi.org/10.1016/j.envpol.2011.04.016
[33]  Rajiv, P., Rajeshwari, S. and Venckatesh, R. (2013) Bio-Fabrication of Zinc Oxide Nanoparticles Using Leaf Extract of Parthenium hysterophorus L. and Its Size-Dependent Antifungal Activity against Plant Fungal Pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, 384-387.
http//dx.doi.org/10.1016/j.saa.2013.04.072
[34]  Anand Raj, L.F.A. and Jayalakshmy, E. (2015) Biosynthesis and Characterization of Zinc Oxide Nanoparticles Using Root Extract of Zingiber officinale. Oriental Journal of Chemistry, 31, 51-56.
http//dx.doi.org/10.13005/ojc/310105
[35]  Bhuyan, T., Mishra, K., Khanuja, M. and Prasad, R. (2015) Biosynthesis of Zinc Oxide Nanoparticles from Azadirachta indica for Antibacterial and Photocatalytic Applications. Materials Science in Semiconductor Processing, 32, 55-56.
http//dx.doi.org/10.1016/j.mssp.2014.12.053
[36]  Rajiv, P., Rajeshwari, S. and Venckatesh, R. (2013) Rambutan Peels Promoted Biomimetic Synthesis of Bioinspired Zinc Oxide Nanochains for Biomedical Applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 112, 384-387.
http//dx.doi.org/10.1016/j.saa.2013.04.072
[37]  Wang, X.X., Wu, L., Zhou, P., Li, C., Zhao, L.B., An. W. and Chen, Y. (2014) Effect of ZnO Nanoparticles on Medicago Sativa at the Germination Stage. Applied Mechanics & Materials, 665, 583-586.
http//dx.doi.org/10.4028/www.scientific.net/AMM.665.583
[38]  Anbuvannana, M., Rameshb, M., Viruthagiria, G., Shanmugama, N. and Kannadasana, N. (2015) Anisochilus carnosus Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles for Antibacterial and Photocatalytic Activities. Materials Science in Semiconductor Processing, 39, 621-628.
http//dx.doi.org/10.1016/j.mssp.2015.06.005
[39]  Nagajyothi, P.C., An, T.N.M., Sreekanth, T.V.M., Lee, D.J. and Lee, K.D. (2013) Green Route Biosynthesis: Characterization and Catalytic Activity of ZnO Nanoparticles. Materials Letters, 108, 160-163.
http//dx.doi.org/10.1016/j.matlet.2013.06.095
[40]  Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basub, R. and Nandyc, P. (2015) Green Synthesis of Zinc Oxide Nanoparticles Using Hibiscus subdariffa Leaf Extract: Effect of Temperature on Synthesis, Anti-Bacterial Activity and Anti-Diabetic Activity. RSC Advances, 5, 4993-5003.
http//dx.doi.org/10.1039/C4RA12784F
[41]  Samat, N.A. and Nor, R.M. (2013) Sol-Gel Synthesis of Zinc Oxide Nanoparticles Using Citrus Aurantifolia Extracts. Ceramics International, 39, S545-S548.
http//dx.doi.org/10.1016/j.ceramint.2012.10.132
[42]  Baliga, M.S. and Kurian, P.J. (2012) Ixora coccinea Linn.: Traditional Uses, Phytochemistry and Pharmacology. Chinese Journal of Integrative Medicine, 18, 72-79.
http//dx.doi.org/10.1007/s11655-011-0881-3
[43]  Imitan, S., Albonetti, S., Forni, L., Peri, F. and Lazzari, D. (2009) Solvothermal Synthesis and Properties Control of Doped ZnO Nanoparticles. Journal of Colloid and Interface Science, 329, 73-80.
http//dx.doi.org/10.1016/j.jcis.2008.09.060
[44]  Bigdeli, F., Morsali, A. and Retalleau, P. (2010) Synthesis and Characterization of Different zinc (II) Oxide Nano-Structures from Direct Thermal Decomposition of ID Coordination Polymers. Polyhedron, 29, 801-806.
http//dx.doi.org/10.1016/j.poly.2009.10.027
[45]  Meléndrez, M.F., Cardenas, G. and Arbiol, J. (2010) Synthesis and Characterization of Gallium Colloidal Nanoparticles. Journal of Colloid and Interface Science, 346, 279-287.
http//dx.doi.org/10.1016/j.jcis.2009.11.069
[46]  Garcia, A., Cuesta, A., Montes-Moran, M., Martinez-Alonso, A. and Tascon, J. (1997) Zeta Potential as a Tool to Characterize Plasma Oxidation of Carbon Fibers. Journal of Colloid and Interface Science, 192, 363-367.
http//dx.doi.org/10.1006/jcis.1997.5007
[47]  Srinivasa Rao, N. and Basaveswara Rao, M.V. (2015) Structural and Optical Investigation of ZnO Nanopowders Synthesized from Zinc Chloride and Zinc Nitrate. American Journal of Materials Science, 5, 66-68.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413