全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of Biofunctionalized Cellulose Acetate Nanoscaffolds for Heart Valve Tissue Engineering

DOI: 10.4236/wjnse.2016.64013, PP. 129-152

Keywords: Heart Valve Tissue Engineering, Cellulose Acetate, Scaffolds, Nanomaterials, Polymers, Atomic Force Microscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Currently-used mechanical and biological heart valve prostheses have a satisfactory short-term performance, but may exhibit several major drawbacks on the long-term. Mechanical prostheses, based on carbon, metallic and polymeric components, require permanent anticoagulation treatment, and their usage often leads to adverse reactions, e.g. thromboembolic complications and endocarditis. In recent years, there is a need for a heart valve prosthesis that can grow, repair and remodel. The concept of tissue engineering offers good prospects into the development of such a device. An ideal scaffold should mimic the structural and purposeful profile of materials found in the natural extracellular matrix (ECM) architecture. The goal of this study was to develop cellulose acetate scaffolds (CA) for valve tissue regeneration. After their thorough physicochemical and biological characterization, a biofunctionalization process was made to increase the cell proliferation. Especially, the surface of scaffolds was amplified with functional molecules, such as RGD peptides (Arg-Gly-Asp) and YIGSRG laminins (Tyrosine-Isoleucine-Glycine-Serine-Arginine-Glycine) which immobilized through biotin-streptavidin bond, the strongest non-covalent bond in nature. Last step was to successfully coat an aortic metallic valve with CA biofunctionallized nanoscaffolds and cultivate cells in order to create an anatomical structure comparable to the native valve. Promising results have been obtained with CA-based nanoscaffolds. We found that cells grown successfully on the biofunctionalized valve surface thereby scaffolds that resemble the native tissues, elaborated with bioactive factors such as RGD peptides and laminins not only make the valve’s surface biocompatible but also they could promote endothyliazation of cardiac valves causing an anti-coagulant effect

References

[1]  Filova, E., Straka, F., Mirejovsky, T., Masin, J. and Bacakova L. (2009) Tissue-Engineered Heart Valves. Physiological Research, 58, S141-S158.
http://www.biomed.cas.cz/physiolres/pdf/58%20Suppl%202/58_S141.pdf
[2]  Yacoub, M.H. and Takkenberg, J.J. (2005) Will Heart Valve Tissue Engineering Change the World? Nature Clinical Practice Cardiovascular Medicine, 2, 60-61.
http://dx.doi.org/10.1038/ncpcardio0112
[3]  Karagkiozaki, V. (2013) Nanomedicine Highlights in Atherosclerosis. Journal of Nano-particle Research, 15, 1529.
http://link.springer.com/article/10.1007/s11051-013-1529-1
http://dx.doi.org/10.1007/s11051-013-1529-1
[4]  Medtronic Inc (2000) News Release: Medtronic Receives CE Mark, Releases New Mechanical Heart Valve to European Surgeons. Medtronic Inc., Minneapolis.
http://www.medtronic.com/us-en/about/news.html
[5]  American Heart Association (2004) Heart and Stroke Statistical Update. Dallas.
http://www.heart.org/HEARTORG/General/Heart-and-Stroke-Association-Statistics_
UCM_319064_SubHomePage.jsp
[6]  Vesely, I. (2005) Heart Valve Tissue Engineering. Circulation Research, 97, 743-755.
http://circres.ahajournals.org/content/97/8/743.short
http://dx.doi.org/10.1161/01.RES.0000185326.04010.9f
[7]  Schoen, F.J. and Levy, R.J. (1999) Tissue Heart Valves: Current Challenges and Future Research Perspectives. Journal of Biomedical Materials Research, 47, 439-465.
http://www.ncbi.nlm.nih.gov/pubmed/10497280
http://dx.doi.org/10.1002/(SICI)1097-4636(19991215)47:4<439::AID-JBM1>3.0.CO;2-O
[8]  Stelt, B.J. Tissue Engineering of Aortic Valves, BMTE 04.23. A Literature Review, Eindhoven University of Technology Faculty of Biomedical Engineering.
http://www.mate.tue.nl/mate/pdfs/4335.pdf
[9]  Rahimtoola, S. (2003) Choice of Prosthetic Heart Valve for Adult Patients. Journal of the American College of Cardiology, 41, 893-904.
http://www.sciencedirect.com/science/article/pii/S0735109702029650
http://dx.doi.org/10.1016/S0735-1097(02)02965-0
[10]  Hammermeister, K., Sethi, G.K., Henderson, W.G., Grover, F.L., Oprian, C. and Rahimtoola, S.H. (2000) Outcomes 15 Years after Valve Replacement with a Mechanical versus a Bioprosthetic Valve: Final Report of the Veterans Affairs Randomized Trial. Journal of the American College of Cardiology, 36, 1152-1158.
http://www.sciencedirect.com/science/article/pii/S0735109700008342
http://dx.doi.org/10.1016/S0735-1097(00)00834-2
[11]  Jamieson, W.R., von Lipinski, O., Miyagishima, R.T., Burr, L.H., Janusz, M.T., Ling, H., Fradet, G.J., Chan, F. and Germann, E. (2005) Performance of Bioprostheses and Mechanical Prostheses Assessed by Composites of Valve-Related Complications to 15 Years after Mitral Valve Replacement. Journal of Thoracic and Cardiovascular Surgery, 129, 1301-1308.
http://www.jtcvsonline.org/article/S0022-5223(05)00010-3/abstract
http://dx.doi.org/10.1016/j.jtcvs.2004.09.042
[12]  Schoen, F.J. (2001) Pathology of Heart Valve Substitution with Mechanical and Tissue Prostheses. In: Silver, M.D., Gotlieb, A.I. and Schoen, F.J., Eds., Cardiovascular Pathology, 3rd Edition, Churchill Livingstone, New York, 629-677.
[13]  Aschermann, M. (2004) Kardiologie. Galen, Prague, 1322. (In Czech)
[14]  Concha, M., Aranda, P.J., Casares, J., Merino, C., Alados, P., Munoz, I., Gonzales, JR., Ribes, R. and Villalbar, R. (2004) The Ross Procedure. Journal of Cardiac Surgery, 19, 401-409.
http://onlinelibrary.wiley.com/doi/10.1111/j.0886-0440.2004.04080.x/abstract;jsessionid=
640ECCB9CEE30E68157430D9AE640DB9.f02t03
http://dx.doi.org/10.1111/j.0886-0440.2004.04080.x
[15]  Malm, C. and Tanghe, L. (1955) Chemical Reactions in the Making of Cellulose Acetate. Industrial & Engineering Chemistry, 47, 995-999.
http://pubs.acs.org/doi/abs/10.1021/ie50545a034
http://dx.doi.org/10.1021/ie50545a034
[16]  Entcheva, E., Bien, H., Yin, L., Chung, C.Y., Farrell, M. and Kostov, Y. (2004) Functional Cardiac Cell Constructs on Cellulose-Based Scaffolding. Biomaterials, 25, 5753-5762.
http://www.sciencedirect.com/science/article/pii/S0142961204000699
http://dx.doi.org/10.1016/j.biomaterials.2004.01.024
[17]  Chronakis, J. (2005) Novel Nanocomposites and Nanoceramics Based on Polymer Nanofibers Using Electrospinning Process—A Review. Journal of Materials Processing Technology, 167, 283-293.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.7484&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.jmatprotec.2005.06.053
[18]  Nandakumar, A., Tahmasebi Birgani, Z., Santos, D., Mentink, A., Auffermann, N., van der Werf, K., Bennink, M., Moroni, L., van Blitterswijk, C. and Habibovic, P. (2013) Surface Modification of Electrospun Fibre Meshes by Oxygen Plasma for Bone Regeneration. Biofabrication, 5, Article ID: 015006.
http://iopscience.iop.org/article/10.1088/1758-5082/5/1/015006/meta;jsessionid=39E95CA
3EC5EF61CD9C6ABD537C6166F.c1.iopscience.cld.iop.org
http://dx.doi.org/10.1088/1758-5082/5/1/015006
[19]  Chen, J-P. and Su, C.-H. (2011) Surface Modification of Electrospun PLLA Nanofibers by Plasma Treatment and Cationized Gelatin Immobilization for Cartilage Tissue Engineering. Acta Biomaterialia, 7, 234-243.
https://www.researchgate.net/publication/45799053_Surface_modification_of_electrospun
_PLLA_nanofibers_by_plasma_treatment_and_cationized_gelatin_immobilization_for_
cartilage_tissue_engineering
http://dx.doi.org/10.1016/j.actbio.2010.08.015
[20]  Pappa, A.-M., Karagkiozaki, V., Krol, S., Kassavetis, S., Konstantinou D., Pitsalidis, C., Tzounis, L., Pliatsikas, N. and Logothetidis, S. (2015) Oxygen-Plasma-Modified Biomimetic Nanofibrous Scaffolds for Enhanced Compatibility of Cardiovascular Implants. Beilstein Journal of Nanotechnology, 6, 254-262.
http://www.beilstein-journals.org/bjnano/single/articleFullText.htm?publicId=2190-4286-6-24
http://dx.doi.org/10.3762/bjnano.6.24
[21]  Ramakrishna, S., Fujihara, K., Teo, W.-E., Yong, T., Ma, Z. and Ramaseshan, R. (2006) Electrospum Nanofibres: Solving Global Issues. Materialstoday, 9, 40-50.
http://www.sciencedirect.com/science/article/pii/S136970210671389X
http://dx.doi.org/10.1016/S1369-7021(06)71389-X
[22]  Rodriguez, K., Gatenholm, P. and Renneckar, S. (2012) Electrospinning Cellulosic Nanofibers for Biomedical Applications: Structure and in Vitro Biocompatibility, Cellulose, 19, 1583-1598.
http://link.springer.com/article/10.1007/s10570-012-9734-0
http://dx.doi.org/10.1007/s10570-012-9734-0
[23]  Wang, Y., Robertson, J., Spillman Jr., W. and Claus, R. (2004) Effects of the Chemical Structure and the Surface Properties of Polymeric Biomaterials on Their Biocompatibility. Pharmaceutical Research, 21, 1362-1373.
http://link.springer.com/article/10.1023/B:PHAM.0000036909.41843.18
http://dx.doi.org/10.1023/B:PHAM.0000036909.41843.18
[24]  Rocktotpal, K., Niranjan, K. and Manjusri, M. (2013) Electrospun Cellulose Acetate Nanofibers: The Present Status and Gamut of Biotechnological Applications. Biotechnology Advances, 31, 421-437.
https://www.researchgate.net/publication/234107090_Electrospun_cellulose_acetate_
nanofibers_The_present_status_and_gamut_of_biotechnological_applications
http://dx.doi.org/10.1016/j.biotechadv.2013.01.002
[25]  Baek, W.-I., Pant, H.-R., Nam, K.-T., Nirmala, R., Oh, H.-J., Kim, I. and Kim, H.-Y. (2011) Effect of Adhesive on the Morphology and Mechanical Properties of Electrospun Fibrous Mat of Cellulose Acetate. Carbohydrate Research, 346, 1956-1961.
http://www.sciencedirect.com/science/article/pii/S0008621511002874
http://dx.doi.org/10.1016/j.carres.2011.05.025
[26]  Wise, S., Waterhouse, A., Kondyurin, A., Bilek, M. and Weiss, A. (2012) Plasma-Based Biofunctionalization of Vascular Implants. Nanomedicine, 7, 1907-1916.
http://www.futuremedicine.com/doi/abs/10.2217/nnm.12.161?url_ver=Z39.88-2003&rfr_
id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.2217/nnm.12.161
[27]  Guo, L.M., Zeng, X.F., Ma, R.D., Shang, G.S., Hao, M. and Yi, D.H. (2010) [Surface Modification of RGD Peptides onto Acellularized Porcine Aortic Valve to Promote Cell Adhesion]. Journal of Sichuan University (Medical Science Edition), 41, 1008-1011, 1054.
http://www.pubpdf.com/pub/21265104/Surface-modification-of-RGD-peptides-onto-
acellularized-porcine-aortic-valve-to-promote-cell-adhesio
[28]  Domingos, M., Intranuovo, F., Gloria, A., Gristina, R., Ambrosio, L., Bártolo, P.J. and Favia, P. (2013) Improved Osteoblast Cell Affinity on Plasma-Modified 3-D Extruded PCL Scaffolds. Acta Biomaterialia, 9, 5997-6005.
https://www.researchgate.net/publication/234122267_Improved_osteoblast_cell_affinity_
on_plasma-modified_3-D_extruded_PCL_scaffolds
http://dx.doi.org/10.1016/j.actbio.2012.12.031
[29]  Groll, J., Amirgoulova, E.V., Ameringer, T., Heyes, C.D., Rocker, C., Nienhaus, G.U. and Moller, M. (2004) Biofunctionalization, Ultrathin Coatings of Cross-Linked Star Shaped Poly (Ethylene Oxide) Allow Reversible Folding of Immobilized Proteins. Journal of the American Chemical Society, 126, 4234-4239.
http://pubs.acs.org/doi/abs/10.1021/ja0318028
http://dx.doi.org/10.1021/ja0318028
[30]  Tungprapa, S., Puangparn, T., Weerasombut, M., Jangchud, I., Fakum, P., Semongkhol, S., Meechaisue, C. and Supaphol, P. (2007) Electrospun Cellulose Acetate Fibers: Effect of Solvent System on Morphology and Fiber Diameter. Cellulose, 14, 563-575.
http://link.springer.com/article/10.1007/s10570-007-9113-4
http://dx.doi.org/10.1007/s10570-007-9113-4
[31]  Son, W.-K., Youk, J.I.-H., Lee, T.-S. and Park, W.-H. (2004) Electrospinning of Ultrafine Cellulose Acetate Fibers: Studies of a New Solvent System and Deacetylation of Ultrafine Cellulose Acetate Fibers. Journal of Polymer Science Part B: Polymer Physics, 42, 5-11.
http://onlinelibrary.wiley.com/doi/10.1002/polb.10668/abstract
http://dx.doi.org/10.1002/polb.10668
[32]  Cutler, S. and Garcia, A. (2003) Engineering Cell Adhesive Surfaces That Direct Integrin α5β1 Binding Using a Recombinant Fragment of Fibronectin. Biomaterials, 24, 1759-1770.
http://www.sciencedirect.com/science/article/pii/S0142961202005707
http://dx.doi.org/10.1016/S0142-9612(02)00570-7
[33]  Garcia, A., Vega, M. and Boettiger, D. (1999) Modulation of Cell Proliferation and difFerentiation through Substrate-Dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10, 785-789.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC25202/
http://dx.doi.org/10.1091/mbc.10.3.785
[34]  Keselowsky, B., Collard, D. and Garcia, A. (2003) Surface Chemistry Modulates Fibronectin Conformation and Directs Integrin Binding and Specificity to Control Cell Adhesion. Journal of Biomedical Materials Research, 66A, 247-259.
http://onlinelibrary.wiley.com/doi/10.1002/jbm.a.10537/abstract
http://dx.doi.org/10.1002/jbm.a.10537
[35]  Miller, T. and Boettiger, D. (2003) Control of Intracellular Signaling by Modulation of Fibronectin Conformation at the Cell-Materials Interface. Langmuir, 19, 1723-1729.
http://pubs.acs.org/doi/abs/10.1021/la0261500
http://dx.doi.org/10.1021/la0261500
[36]  Irvine, D.J., Hue, K.A., Mayes, A.M. and Griffith, L.G. (2002) Simulations of Cell-Surface Integrin Binding to Nanoscale-Clustered Adhesion Ligands. Biophysical Journal, 82, 120-132.
http://www.cell.com/biophysj/abstract/S0006-3495(02)75379-4
http://dx.doi.org/10.1016/S0006-3495(02)75379-4
[37]  Hersel, U., Dahmen, C. and Kessler, H. (2003) RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond. Biomaterials, 24, 4385-4415.
http://www.sciencedirect.com/science/article/pii/S0142961203003430
http://dx.doi.org/10.1016/S0142-9612(03)00343-0

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133