全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Integrative Five-Fluid Circulation System in the Human Body

DOI: 10.4236/ojmip.2016.64005, PP. 45-97

Keywords: Glymphatic System, Primo Vasculature System, Cerebrospinal Fluid, Intra-Cranial and Extra-Cranial Interstitial Fluids, Lymph, Cardiovascular System, Integrative Five-Fluid Circulation System, Neuro Degenerative Diseases

Full-Text   Cite this paper   Add to My Lib

Abstract:

Water is the key medium to transport numerous constituents and to provide a platform for physiological processes to take place in the living organisms in general; it also participates actively in many of these processes. In humans, there are different vehicles to contain water and its constituents. Our objective is to find out whether there is an overall water-base circulation system in the human body by analyzing the updated findings of different research groups on the physiological functions of various seemingly isolated fluid systems. By 1963, there were five separate fluid systems discovered in mammalians: (i) The Primo Vasculature Fluid (PVF) with protein precursors and micro cells held in the Primo Vasculature System (PVS). (ii) Blood with its constituents held in the cardio vasculature. (iii) Extracranial interstitial fluid (ISF) whose vehicle had a very irregular structure—the interstitium all over the body. (iv) The cerebrospinal fluid had been considered to be within the brain ventricles and spinal canal. (v) The extra-cranial lymphatic system which drained ISF, and had been known to join the subclavian vein. Fluid (i) was first reported in 1963 and fluids (ii) to (v) have been known for many decades, but the failure to detect a lymphatic system inside the skull has also been a mystery for many decades. The intra-cranial ISF (which we name as BISF) has drawn little attention, apart from discussing the mechanism of the blood-brain-barrier. During the past decade, there has been direct evidence indicating that CSF and BISF are actually mixed. After that, the intracranial lymphatic system was discovered and confirmed in animal models only slightly over one year back, and we called such fluid as glymphatic-fluid. After reviewing the stated “classical” five fluid systems together with the new findings in Sections 2 - 7, we propose, for the first time, that the PVF, the blood, ISF, a mixture of CSF-BISF, and a mixture of glymphatic-fluid and lymph form an integrative circulation system in water base in the human and other mammalian bodies, as schematically represented in the last section. In this paper, we point out the positive correlation of chronic neuro degenerative diseases such as Alzheimer’s disease, Parkinson’s diseases and the insufficient brain wastes clearance by the glymphatic system. We also discuss the role played by the venous vessels as part of such clearance in upright posture. Moreover, simple non-invasive maneuver techniques are introduced here, as one example of enhancement of glymphatic fluid flow out of the skull to join the

References

[1]  Dubinskaya, V.A., Eng, L.S., Rebrow, L.B. and Bykov, V.A. (2007) Comparative Study of the State of Water in Various Human Tissues. Bulletin of Experimental Biology and Medicine, 144, 294-297.
[2]  Kim, B.H. (1963) On the Kyungrak System. Journal of Academy of Medical Sciences, 90, 1-41.
[3]  Avijgana, M. and Avijgan, M. (2014) Does the Primo Vascular System Originate from the Polar Body? Integrative Medicine International, 1, 108-118.
[4]  Jessen, N.A., Munk, A.S.F. and Nedergaard, I.L.M. (2015) The Glymphatic System: A Beginner’s Guide. Neurochemical Research, 40: 2583-2599. http://dx.doi.org/10.1007/s11064-015-1581-6
[5]  Kim, B.H. (1965) The Kyungrak System. Journal of Jo Sun Medicine, 108, 1-38.
[6]  Podgrabinska, S., Braun, P., Velasco, P., Kloos, B., Pepper, M., Jackson, D.G. and Skobe, M. (2002) Molecular Characterization of Lymphatic Endothelial Cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 16069-16074.
http://dx.doi.org/10.1073/pnas.242401399
[7]  Hangai-Hoger, N., Cabrales, P., Briceno, J.C., Tsai, A.G. and Intaglietta, M. (2004) Microlymphatic and Tissue Oxygen Tension in the Rat Mesentery. American Journal of Physiology—Heart and Circulatory Physiology, 286, H868-H883.
[8]  Soh, K.S., Kang, K.A. and Ryu, Y.H. (2013) 50 Years of Bong-Han Theory and 10 Years of Primo Vascular System. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 587827. http://dx.doi.org/10.1155/2013/587827
[9]  Vodyanoy, V., Pustovyy, O., Globa, L. and Sorokulova, I. (2015) Primo-Vascular System as Presented by Bong Han Kim. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 361974. http://dx.doi.org/10.1155/2015/361974
[10]  Cho, S.J., Kim, B.S. and Park, Y.S. (2004) Threadlike Structures in the Aorta and Coronary Artery of Swine. Journal of International Society of Life Information Science, 22, 609-611.
[11]  Johng, H.M., Yoo, J.S., Yoon, T. J., Shin, H.S., Lee, B.C., Lee, C.H. Lee, J.K. and Soh, K.S. (2007) Use of Magnetic Nanoparticles to Visualize Threadlike Structures inside Lymphatic Vessels of Rats. Evidence-Based Complementary and Alternative Medicine, 4, 77-82.
http://dx.doi.org/10.1093/ecam/nel057
[12]  Yoo, J.S., Kim, M.S., Ogay, V. and Soh, K.S. (2008) In Vivo Visualization of Bonghan Ducts inside Blood Vessels of Mice by Using an Alcian Blue Staining Method. Indian Journal of Experimental Biology, 46, 336-339.
[13]  Lee, B.C. and Soh, K.S. (2008) Contrast-Enhancing Optical Method to Observe a Bonghan Duct Floating inside a Lymphatic Vessel of a Rabbit. Lymphology, 41, 178-185.
[14]  Lee, B.C., Bae, K.H., Jhon, G.J. and Soh, K.S. (2009) Bonghan System as Mesenchymal Stem Cell Niches and Pathways of Macrophages in Adipose Tissues. Journal of Acupuncture and Meridian Studies, 2, 79-82. http://dx.doi.org/10.1016/S2005-2901(09)60020-0
[15]  Lee, B.C., Kim, H.B. and Sung, B. (2011) Network of Endocardial Vessels. Cardiology, 118, 1-7.
http://dx.doi.org/10.1159/000323844
[16]  Jia, Z.F., Soh, K.S., Zhou, Q., Dong, B. and Yu, W.H. (2011) Study of Novel Threadlike Structures on the Intestinal Fascia of Dog. Journal of Acupuncture and Meridian Studies, 4, 98-101. http://dx.doi.org/10.1016/S2005-2901(11)60014-9
[17]  Dai, J. and Soh, K.S. (2011) In Situ Staining of the Primo Vascular System in the Ventricles and Subarachnoid Space of the Brain by Trypan Blue Injection into The lateral Ventricle. Neural Regeneration Research, 6, 2171-2175.
[18]  Moon, S.H., Cha, R., Lee, M., Kim, S. and Soh, K.S. (2012) Primo Vascular System in the Subarachnoid Space of the Spinal Cord of a Pig. Journal of Acupuncture and Meridian Studies, 5, 226-233. http://dx.doi.org/10.1016/j.jams.2012.07.006
[19]  Lee, S.Y., Lee, B.C., Soh, K.S. and Jhon, G.J. (2012) Development of the Putative Primo Vascular System before the Formation of Vitelline Vessels in Chick Embryos. In: Soh, K.S., Kang, K.A. and Harrison, D.K., Eds., The Primo Vascular System, Springer, New York, 77- 82.
http://dx.doi.org/10.1007/978-1-4614-0601-3_11
[20]  Tian, Y.Y., Jing, X.H., Guo, S.G., Jia, S.Y., Zhang, Y.Q., Zhou, W.T., Huang, T. and Zhang, W.B. (2013) Study on the Formation of Novel Threadlike Structure through Intravenous Injection of Heparin in Rats and Refined Observation in Minipigs. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 731518.
http://dx.doi.org/10.1155/2013/731518
[21]  Stefanov, M. and Kim, J.D. (2015) Visualizing the Peripheral Primo Vascular System in Mice Skin by Using the Polymer Mercox. Journal of Pharmacopuncture, 18, 75-79.
http://dx.doi.org/10.3831/KPI.2015.18.028
[22]  Lee, B.S., Lee, B.C., Park, J.E., Choi, H.K., Choi, S.J. and Soh, K.S. (2014) Primo Vascular System in Human Umbilical Cord and Placenta. Journal of Acupuncture and Meridian Studies, 7, 291-297. http://dx.doi.org/10.1016/j.jams.2014.09.002
[23]  Lee, B.C., Park, E.S., Nam, T.J., Johng, H.M., Baik, K.Y. and Soh, K.S. (2004) Bonghan Ducts on the Surface of Rat Internal Organs. Journal of International Society of Life Information Science, 22, 455-459.
[24]  Yoo, J.S., Hossein Ayati, M., Kim, H.B., Zhang, W.B. and Soh, K.S. (2010) Characterization of the Primo-Vascular System in the Abdominal Cavity of Lung Cancer Mouse Model and Its Differences from the Lymphatic System. PLoS ONE, 5, e9940.
http://dx.doi.org/10.1371/journal.pone.0009940
[25]  Ogay, V., Bae, K.H., Kim, K.W. and Soh, K.S. (2009) Comparison of the Characteristic Features of Bonghan Ducts, Blood and Lymphatic Capillaries. Journal of Acupuncture and Meridian Studies, 2, 107-117. http://dx.doi.org/10.1016/S2005-2901(09)60042-X
[26]  Lee, S.J., Lee, B.C., Nam, C.H., Lee, W.C., Jhang, S.U., Park, H.S. and Soh, K.S. (2008) Proteomic Analysis for Tissues and Liquid from Bonghan Ducts on Rabbit Intestinal Surfaces. Journal of Acupuncture and Meridian Studies, 1, 97-109.
http://dx.doi.org/10.1016/S2005-2901(09)60029-7
[27]  Kim, J.D., Ogay, V., Lee, B.C., Kim, M.S., Lim, I.B., Woo, H.J., Park, H.J., Kehr, J. and Soh, K.S. (2008) Catecholamine Producing Novel Endocrine Organ: Bonghan System. Medical Acupuncture, 20, 97-102. http://dx.doi.org/10.1089/acu.2008.0600
[28]  Pappanon, A.J. and Wier, W.G. (2013) Cardiovascular Physiology. 10th Edition, Elsevier, Philadelphia.
[29]  Tortora, G.J. and Derrickson, B. (2012) The Cardiovascular System: Blood Vessels and Hemodynamics. In: Tortora, G.J. and Derrickson, B., Eds., Principles of Anatomy & Physiology, 13th Edition, John Wiley & Sons, Hoboken, p.817.
[30]  Tortora, G.J. and Derrickson, B. (2012) The Cardiovascular System: Blood Vessels and Hemodynamics. In: Tortora, G.J. and Derrickson, B., Eds., Principles of Anatomy & Physiology, 13th Edition, John Wiley & Sons, Hoboken, p. 816.
[31]  Boron, W.F. and Boupaep, E.L. (2016) Medical Physiology. 3rd Edition, Elsevier Publisher, Philadelphia.
[32]  Késmárky, G., Kenyeres, P., Rábai, M. and Tóth, K. (2008) Plasma Viscosity: A Forgotten Variable. Clinical Hemorheology and Microcirculation, 39, 243-246.
[33]  Basu, P., Sen, U., Tyagi, N., and Tyagi, S.C. (2010) Blood Flow Interplays with Elastin: Collagen and MMP: TIMP Ratios to Maintain Healthy Vascular Structure and Function. Vascular Health and Risk Management, 6, 215-228.
[34]  Rucklidge, G.J., Milne, G., McGaw, B.A., Milne, E. and Robins, S.P. (1992) Turnover Rates of Different Collagen Types Measured by Isotope Ratio Mass Spectrometery. Biochimica et Biophysica Acta (BBA)—General Subjects, 1156, 57-61.
[35]  Libby, P. and Lee, R.T. (2000) Matrix Matters. Circulation, 102, 1874-1876.
http://dx.doi.org/10.1161/01.CIR.102.16.1874
[36]  Ota, R., Kutihara, C. and Tsou, T.L. (2009) Roles of Matrix Metalloproteinases in Flow- Induced outward Vascular Remodeling. Journal of Cerebral Blood Flow & Metabolism, 29, 1547-1558.
http://dx.doi.org/10.1038/jcbfm.2009.77
[37]  Discher, D.E., Janmey, P.A. and Wang, Y.L. (2005) Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science, 310, 1139-1143.
http://dx.doi.org/10.1126/science.1116995
[38]  Pelham, R.J. and Wang, Y.L. (1997) Cell Locomotion and Focal Adhesions Are Regulated by Substrate Flexibility. Proceedings of the National Academy of Sciences of the United States of America, 94, 13661-13665. http://dx.doi.org/10.1073/pnas.94.25.13661
[39]  Takagi, Y., Homsher, E.E., Goldman, Y.E. and Shuman, H. (2006) Force Generation in single Conventional Actomyosin Complexes under High Dynamic Load. Biophysical Journal, 90, 1295-1307. http://dx.doi.org/10.1529/biophysj.105.068429
[40]  Reilly, K. (2015) Cardiac Fibrosis: New Treatments in Cardiovascular Medicine. U.S. Pharmacist, 40, 32-35.
[41]  Shapira-Schweitzer, K. and Seliktar, D. (2007) Matrix Stiffness Affects Spontaneous Contraction of Cardiomyocytes Cultured within a PEGylated Fibrinogen Biomaterial. Acta Bio- materialia, 3, 33-41. http://dx.doi.org/10.1016/j.actbio.2006.09.003
[42]  Engler, A.J., Carag-Krieger, C., Johnson, C.P., Raab, M., Tang, H.Y., Speicher, D.W., Sanger, J.W., Sanger, J.M. and Dische, D.E. (2008) Embryonic Cardiomyocytes Beat Best on a Matrix with Heart-Like Elasticity: Scar-Like Rigidity Inhibits Beating. Journal of Cell Science, 121, 3794-3802. http://dx.doi.org/10.1242/jcs.029678
[43]  Fung, P.C.W. (2013) Chapter 5: Plausible Biomedical Consequences of Acupuncture Applied at Sites Characteristic of Acupoints in the Connective-Tissue-Interstitial-Fluid System. In: Chen, L.L. and Cheng, T.O., Eds., Acupuncture in Modern Medicine, IntechOpen, Rijeka, 95-131.
[44]  Mortazavi, M.M., Tubbs, R.S., Riech, S., Verma, K., Shoja, M.M., Zurada, A., Benninger, B., Loukas, M. and Cohen-Gadol, A.A. (2012) Anatomy and Pathology of the Cranial Emissary Veins: A Review with Surgical Implications. Neurosurgery, 70, 1312-1318.
http://dx.doi.org/10.1227/NEU.0b013e31824388f8
[45]  Reis, C.V.C., Deshmukh, V., Zabramski, J.M., Crusius, M., Desmukh, P., Spetzler, R.F. and Preul, M.C. (2007) Anatomy of the Mastoid Emissary Vein and Venous System of the Posterior Neck Region: Neurosurgical Implications. Neurosurgery, 61, 193-201.
http://dx.doi.org/10.1227/01.neu.0000303217.53607.d9
[46]  Freire, A.R., Rossi, A.C., de Oliveira, V.C.S., Prado, F.B., Caria, P.H.F. and Botacin, P.R. (2013) Emissary Foramens of the Human Skull: Anatomical Characteristics and Its Relations with Clinical Neurosurgery. International Journal of Morphology, 31, 287-292.
http://dx.doi.org/10.4067/S0717-95022013000100045
[47]  San Millán Ruíz, D., Gailloud, P., Rüfenacht, D.A., Delavelle, J., Henry, F. and Fasel, J.H.D. (2002) The Craniocervical Venous System in Relation to Cerebral Venous Drainage. AJNR American Journal of Neuroradiology, 23, 1500-1508.
[48]  Wysocki, J., Reymond, J., Skarzyński, H. and Wróbel, B. (2006) The Size of Selected Human Skull Foramina in Relation to Skull Capacity. Folia Morphologica, 65, 301-308.
[49]  Murlimanju, B.V., Chettiar, G.K., Prameela, M.D., Mamatha Tonse, M., Kumar, N., Saralaya, V.V. and Prabhu, L.V. (2014) Mastoid Emissary Foramina: An Anatomical Morphological Study with Discussion on Their Evolutionary and Clinical Implications. Anatomy & Cell Biology, 47, 202-206.
http://dx.doi.org/10.5115/acb.2014.47.3.202
[50]  Kielty, C.M., and Grant, M.E. (2002) The Collagen Family: Structure, Assembly, and Organization in the Extracellular Matrix. In: Royce, P.M. and Steinmann, B., Eds., Connective Tissue and Its Heritable Disorders, Wiley-Liss, Inc., New York, 159-221.
http://dx.doi.org/10.1002/0471221929.ch2
[51]  Meisenberg, G., and Simmons, W.H. (2006) Principles of Medical Biochemistry. Elsevier Health Sciences, Philadelphia, p. 243.
[52]  Swartz, M.A. and Fleury, M.E. (2007) Interstitial Flow and Its Effects in Soft Tissues. Annual Review of Biomedical Engineering, 9, 229-256.
http://dx.doi.org/10.1146/annurev.bioeng.9.060906.151850
[53]  Helm, C.L.E., Fleury, M.E., Zisch, A.H., Boschetti, F. and Swartz, M.A. (2005) Synergy between Interstitial Flow and VEGF Directs Capillary Morphogenesis in Vitro through a Gradient Amplification Mechanism. Proceedings of the National Academy of Sciences of the United States of America, 102, 15779-15784. http://dx.doi.org/10.1073/pnas.0503681102
[54]  Helm, C.L.E., Zisch, A.H. and Swartz, M.A. (2006) Engineered Blood and Lymphatic Capillaries in 3D VEGF-Fibrin-Collagen Matrices with Interstitial Flow. Biotechnology and Bioengineering, 96, 167-176. http://dx.doi.org/10.1002/bit.21185
[55]  Ng, C.P., Helm, C.L.E. and Swartz, M.A. (2004) Interstitial Flow Differentially Stimulates Blood and Lymphatic Endothelial Cell Morphogenesis in Vitro. Microvascular Research, 68, 258-264.
http://dx.doi.org/10.1016/j.mvr.2004.08.002
[56]  Semino, C.E., Kamm, R.D. and Lauffenburger, D.A. (2006) Autocrine EGF Receptor Activation Mediates Endothelial Cell Migration and Vascular Morphogenesis Induced by VEGF under Interstitial Flow. Experimental Cell Research, 312, 289-298.
[57]  Rutkowski, J.M., Boardman, K.C. and Swartz, M.A. (2006) Characterization of Lymphangiogenesis in a Model of Adult Skin Regeneration. American Journal of Physiology—Heart and Circulatory Physiology, 291, H1402-H1410.
http://dx.doi.org/10.1152/ajpheart.00038.2006
[58]  Buschmann, M.D., Gluzband, Y.A., Grodzinsky, A.J. and Hunziker, E.B. (1995) Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte Agarose Culture. Journal of Cell Science, 108, 1497-1508.
[59]  Mow, V.C., Holmes, M.H. and Lai, W.M. (1984) Fluid Transport and Mechanicalproperties of Articular-Cartilage—A Review. Journal of Biomechanics, 17, 377-394.
http://dx.doi.org/10.1016/0021-9290(84)90031-9
[60]  Grodzinsky, A.J., Levenston, M.E., Jin, M. and Frank, E.H. (2000) Cartilage Tissue Remodeling in Response to Mechanical Forces. Annual Review of Biomedical Engineering, 2, 691- 713. http://dx.doi.org/10.1146/annurev.bioeng.2.1.691
[61]  Ikegame, M., Ishibashi, O., Yoshizawa, T., Shimomura, J., Komori, T., Ozawa, H. and Kawashima, H. (2001) Tensile Stress Induces Bone Morphogenetic Protein 4 in Preosteoblastic and Fibroblastic Cells, Which Later Differentiate into Osteoblasts Leading to Osteogenesis in the Mouse Calvariae in Organ Culture. Journal of Bone and Mineral Research, 16, 24-32.http://dx.doi.org/10.1359/jbmr.2001.16.1.24
[62]  Ng, C.P. and Swartz, M.A. (2006) Mechanisms of Interstitial Flow-Induced Remodeling of Fibroblast-Collagen Cultures. Annals of Biomedical Engineering, 34, 446-454.
http://dx.doi.org/10.1007/s10439-005-9067-3
[63]  Wang, S. and Tarbell, JM. (2000) Effect of Fluid Flow on Smooth Muscle Cells in a 3-Dimensional Collagen Gel Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 2220-2225. http://dx.doi.org/10.1161/01.ATV.20.10.2220
[64]  Ethier, C.R., Johnson, M. and Ruberti, J. (2004) Ocular Biomechanics and Biotransport. Annual Review of Biomedical Engineering, 6, 249-273.
http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140055
[65]  Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S. and Harada, A. (1998) Randomization of Left-Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein. Cell, 95, 829-837.
http://dx.doi.org/10.1016/S0092-8674(00)81705-5
[66]  Guyton, A.C. (1991) Textbook of Medical Physiology. Saunders, Philadelphia.
[67]  Guyton, A.C., Scheel, K. and Murphree, D. (1966) Interstitial Fluid Pressure. 3. Its Effect on Resistance to Tissue Fluid Mobility. Circulation Research, 19, 412-419.
http://dx.doi.org/10.1161/01.RES.19.2.412
[68]  Guyton, A.C., Prather, J., Scheel, K. and McGehee, J. (1966) Interstitial Fluid Pressure. 4. Its Effect on Fluid Movement through Capillary Wall. Circulation Research, 19, 1022-1030.
http://dx.doi.org/10.1161/01.RES.19.6.1022
[69]  Renkin, E.M. (1986) Some Consequences of Capillary-Permeability to Macromolecules— Starlings Hypothesis Reconsidered. American Journal of Physiology—Heart and Circulatory Physiology, 250, H706-H710.
[70]  Schmid-Schonbein, G.W. (1990) Microlymphatics and Lymph-Flow. Physiological Reviews, 70, 987-1028.
[71]  Swartz, M.A. (2001) The Physiology of the Lymphatic System. Advanced Drug Delivery Reviews, 50, 3-20. http://dx.doi.org/10.1016/S0169-409X(01)00150-8
[72]  Awwad, H.K., Elnaggar, M., Mocktar, N. and Barsoum, M. (1986) Intercapillary Distance Measurement as an Indicator of Hypoxia in Carcinoma of the Cervix Uteri. International Journal of Radiation Oncology, Biology, Physics, 12, 1329-1333.
http://dx.doi.org/10.1016/0360-3016(86)90165-3
[73]  Less, J.R., Skalak, T.C., Sevick, E.M. and Jain, R.K. (1991) Microvascular Architecture in a Mammary-Carcinoma—Branching Patterns and Vessel Dimensions. Cancer Research, 51, 265-273.
[74]  Ng, C.P. and Swartz, M.A. (2003) Fibroblast Alignment under Interstitial Fluid Flow Using a Novel 3-D Tissue Culture Model. American Journal of Physiology—Heart and Circulatory Physiology, 284, H1771-H1777. http://dx.doi.org/10.1152/ajpheart.01008.2002
[75]  Aukland, K. and Reed, R.K. (1993) Interstitial-Lymphatic Mechanisms in the Control of Extracellular Fluid Volume. Physiological Reviews, 73, 1-78.
[76]  Kwan, M.K., Lai, W.M. and Mow, V.C. (1984) Fundamentals of Fluid Transport through Cartilage in Compression. Annals of Biomedical Engineering, 12, 537-558.
http://dx.doi.org/10.1007/BF02371448
[77]  Reed, R.K., Rubin, K., Wiig, H. and Rodt, S.A. (1992) Blockade of Beta 1-Integrins in Skin Causes Edema through Lowering of Interstitial Fluid Pressure. Circulation Research, 71, 978-983. http://dx.doi.org/10.1161/01.RES.71.4.978
[78]  Wiig, H., Rubin, K. and Reed, R.K. (2003) New and Active Role of the Interstitium in Control of Interstitial Fluid Pressure: Potential Therapeutic Consequences. Acta Anaesthesiologica Scandinavica, 47, 111-121. http://dx.doi.org/10.1034/j.1399-6576.2003.00050.x
[79]  Carmeliet, P. and Jain, R.K. (2000) Angiogenesis in Cancer and Other Diseases. Nature, 407, 249-257. http://dx.doi.org/10.1038/35025220
[80]  Bunn, H.F. and Poyton, R.O. (1996) Oxygen Sensing and Molecular Adaptation to Hypoxia. Physiological Reviews, 76, 839-885.
[81]  Boardman, K.C., and Swartz, M.A. (2003) Interstitial Flow as a Guide for Lymphangiogenesis. Circulation Research, 92, 801-808.
[82]  Swartz, M.A., Kaipainen, A., Netti, P.A., Brekken, C., Boucher, Y., Grodzinsky, A.J. and Jain, R.K. (1999) Mechanics of Interstitial-Lymphatic Fluid Transport: Theoretical Foundation and Experimental Validation. Journal of Biomechanics, 32, 1297-1307.
http://dx.doi.org/10.1016/s0021-9290(99)00125-6
[83]  http://www.uptodate.com/contents/cerebrospinal-fluid-physiology-and-utility-
[84]  Reymond, P., Merenda, F., Perren, F., Rufenacht, D. and Stergiopulos, N. (2009) Validation of a One-Dimensional Model of the Systemic Arterial Tree. American Journal of Physiology—Heart and Circulatory Physiology, 297, H208-H222.
[85]  Martin, B.A., Reymond, P., Novy, J., Balédent, O. and Stergiopulos, N. (2012) A Coupled Hydrodynamic Model of the Cardiovascular and Cerebrospinal Fluid System. American Journal of Physiology—Heart and Circulatory Physiology, 302, H1492-H1509.
http://dx.doi.org/10.1152/ajpheart.00658.2011
[86]  Redzic, Z.B., Preston, J.E., Duncan, J.A., Chodobski, A. and Szmydynger-Chodobska, J. (2005) The Choroid Plexus-Cerebrospinal Fluid System: From Development to Aging. Current Topics in Developmental Biology, 71, 1-52.
http://dx.doi.org/10.1016/S0070-2153(05)71001-2
[87]  Iliff, J.J. and Nedergaard, M. (2013) Is There a Cerebral Lymphatic System? Stroke, 44, S93-S95. http://dx.doi.org/10.1161/STROKEAHA.112.678698
[88]  Abbott, N.J. (2004) Evidence for Bulk Flow of Brain Interstitial Fluid: Significance for Physiology and Pathology. Neurochemistry International, 45, 545-552.
http://dx.doi.org/10.1016/j.neuint.2003.11.006
[89]  Brown, P.D., Davies, S.L., Speake, T. and Millar, I.D. (2004) Molecular Mechanisms of Cerebrospinal Fluid Production. Neuroscience, 129, 955-968.
http://dx.doi.org/10.1016/j.neuroscience.2004.07.003
[90]  Praetorius, J. (2007) Water and Solute Secretion by the Choroid Plexus. Pflügers Archiv— European Journal of Physiology, 454, 1-18. http://dx.doi.org/10.1007/s00424-006-0170-6
[91]  Iliff, J.J., Wang, M.H., Liao, Y.H., Plogg, B.A., Peng, W.G., Gundersen, G.A., Benveniste, H., Vates, G.E., Deane, R., Goldman, S.A., Nagelhus, E.A. and Nedergaard, M. (2012) A Paravascular Pathway Facilitates CSF Flow through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Science Translational Medicine, 4, 147ra111.
http://dx.doi.org/10.1126/scitranslmed.3003748
[92]  Iliff, J.J., Lee, H.D., Yu, M., Feng, T., Logan, J., Nedergaard, M. and Benveniste, H. (2013) Brain-Wide Pathway for Waste Clearance Captured by Contrast-Enhanced MRI. Journal of Clinical Investigation, 123, 1299-1309. http://dx.doi.org/10.1172/JCI67677
[93]  Simić, G., Leko, M.B., Wray, S., Harrington, C., Delalle, I., Jovanov-Milosević, N., Bazadona, D., Buée, L., de Silva, R., Di Giovanni, G., Wischik, C. and Hof, P.R. (2016) Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules, 6, 6.
[94]  Wigle, J.T. and Oliver, G. (1999) Prox1 Function Is Required for the Development of the Murine Lymphatic System. Cell, 98, 769-778. http://dx.doi.org/10.1016/S0092-8674(00)81511-1
[95]  Wilting, J., Papoutsi, M., Othman-Hassan, K., Rodriguez-Nieden-fuhr, M., Prols, F., Tomarev, S. I. and Eichmann, A. (2001) Development of the Avian Lymphatic System. Microscopy Research and Technique, 55, 81-91. http://dx.doi.org/10.1002/jemt.1159
[96]  von der Weid, P.Y. and Zawieja, D.C. (2004) Lymphatic Smooth Muscle: The Motor Unit of Lymph Drainage. The International Journal of Biochemistry & Cell Biology, 36, 1147- 1153.
http://dx.doi.org/10.1016/j.biocel.2003.12.008
[97]  Ohtani, Y. and Ohtani, O. (2001) Postnatal Development of Lymphatic Vessels and Their Smooth Muscle Cells in the Rat Diaphragm: A Confocal Microscopic Study. Archives of Histology and Cytology, 64, 513-522. http://dx.doi.org/10.1679/aohc.64.513
[98]  von der Weid, P.Y., Lee, S., Imtiaz Mohammad, S., Zawieja, D.C. and Davies, M.J. (2014) Electrophysiological Properties of Rat Mesenteric Lymphatic Vessels and Their Regulation by Stretch. Lymphatic Research and Biology, 12, 66-75. http://dx.doi.org/10.1089/lrb.2013.0045
[99]  Goldsby, R., Kindt, T.J., Osborne, B.A. and Kuby, J. (2003) Chapter 2: Cells and Organs of the Immune System. In: Immunology, 5th Edition, W. H. Freeman and Company, New York, 24-56.
[100]  Swirski, F.K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez-Retamozo, V., Panizzi, P., Figueiredo, J.L., Kohler, R.H., Chudnovskiy, A., Waterman, P., Aikawa, E., Mempel, T.R., Libby, P., Weissleder, R. and Pittet, M.J. (2009) Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites. Science, 325, 612-616.
http://dx.doi.org/10.1126/science.1175202
[101]  Szuba, A., Shin, W.S., Strauss, H.W. and Rockson, S. (2003) The Third Circulation: Radionuclide Lymphoscintigraphy in the Evaluation of Lymphedema. Journal of Nuclear Medicine, 44, 43-57.
[102]  Norrmén, C., Tammela, T., Petrova, T.V. and Alitalo, K. (2011) Basic Science for Clinicians, Biological Basis of Therapeutic Lymphangiogenesis. Circulation, 123, 1335-1351.
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.704098
[103]  Choi, I., Lee, S. and Hong, Y.K. (2012) The New Era of the Lymphatic System: No Longer Secondary to the Blood Vascular System. Cold Spring Harbor Perspectives in Medicine, 2, a006445. http://dx.doi.org/10.1101/cshperspect.a006445
[104]  Hall, J.G., Morris, B. and Woolley, G. (1965) Intrinsic Rhythmic Propulsion of Lymph in the Unanaesthetized Sheep. The Journal of Physiology, 180, 336-349.
[105]  Benoit, J.N., Zawieja, D.C., Goodman, A.H. and Granger, H.J. (1989) Characterization of Intact Mesenteric Lymphatic Pump and Its Responsiveness to Acute Edemagenic Stress. American Journal of Physiology, 257, H2059-H2069.
[106]  Gashev, A.A. (1991) The Mechanism of the Formation of a Reverse Fluid Filling in the Lymphangions. Fiziologicheskii Zhurnal SSSR Imeni I. M. Sechenova, 77, 63-69 (in Russian).
[107]  Gashev, A.A., Davis, M.J. and Zawieja, D.C. (2002) Inhibition of the Active Lymph Pump by Flow in Rat Mesenteric Lymphatics and Thoracic Duct. Journal of Physiology, 540, 1023-1037. http://dx.doi.org/10.1113/jphysiol.2001.016642
[108]  Olszewski, W.L. and Engeset, A. (1980) Intrinsic Contractility of Prenodal Lymph Vessels and Lymph Flow in Human Leg. American Journal of Physiology, 239, H775-H783.
[109]  Webb Jr., R.C.W. and Starzl, T.E. (1953) The Effect of Blood Vessel Pulsations on Lymph Pressure in Large Lymphatics. Bulletin of the Johns Hopkins Hospital, 93, 401-407.
[110]  Van Helden, D.F., Von der Weid, P.Y. and Crowe, M.J. (1995) Electrophysiology of Lymphatic Smooth Muscle. In: Bert, J., Laine, G.A., McHale, N.G., Reed, R. and Winlove, P., Eds., Connective Tissue, and Lymphatics, Portland Press, London, 221-236.
[111]  Szuba, A. and Rockson, S.G. (1998) Lymphedema: Classification. Vascular Medicine, 3, 145-156. http://dx.doi.org/10.1177/1358836X9800300209
[112]  Parviainen, E.H.T., Vuorela, J., Toivanen, J., Nikula, T. and Vihko, V. (1997) Lymph Flow Dynamics in Exercising Human Skeletal Muscle as Detected by Scintography. Journal of Physiology, 504, 233-239. http://dx.doi.org/10.1111/j.1469-7793.1997.233bf.x
[113]  Reed, R.K. (1985) Transcapillary Extravasation Rate of Albumin in Rat Skeletal Muscle. Effect of Motor Activity. Acta Physiologica Scandinavica, 125, 719-725.
http://dx.doi.org/10.1111/j.1748-1716.1985.tb07775.x
[114]  Motimer, P.S., Simmonds, R., Rezvani, M., Robbins, M., Hopewell, J.W. and Ryan, T.J. (1990) The Measurement of Skin Lymph Flow by Isotope Clearance—Reliability, Reproducibility, Injection Dynamics and the Effects of Massage. Journal of Investigative Dermatology, 95, 677-682. http://dx.doi.org/10.1111/1523-1747.ep12514347
[115]  Jackson, R.T., Tigges, J. and Arnold, W. (1979) Subarachnoid Space of the CNS, Nasal Mucosa, and Lymphatic System. Archives of Otolaryngology, 105, 180-184.
http://dx.doi.org/10.1001/archotol.1979.00790160014003
[116]  Koh, L., Zakharov, A. and Johnston, M. (2005) Integration of the Subarachnoid Space and Lymphatics: Is It Time to Embrace a New Concept of Cerebrospinal Fluid Absorption? Cerebrospinal Fluid Research, 2, 6.
[117]  Löwhagen, P., Johansson, B.B. and Nordbor, C. (1994) The Nasal Route of Cerebrospinal Fluid Drainage in Man. A Light-Microscope Study. Neuropathology & Applied Neurobiology, 20, 543-550. http://dx.doi.org/10.1111/j.1365-2990.1994.tb01008.x
[118]  Zhang, E.T., Richards, H.K., Kida, S. and Weller, R.O. (1992) Directional and Compartmentalised Drainage of Interstitial Fluid and Cerebrospinal Fluid from the Rat Brain. Acta Neuropathologica, 83, 233-239. http://dx.doi.org/10.1007/BF00296784
[119]  Johnston, M., Zakharov, A., Papaiconomou, C., Salmasi, G. and Armstrong, D. (2004) Evidence of Connections between Cerebrospinal Fluid and Nasal Lymphatic Vessels in Humans, Non-Human Primates and Other Mammalian Species. Cerebrospinal Fluid Research, 1, 2.
http://dx.doi.org/10.1186/1743-8454-1-2
[120]  Zakharov, A., Papaiconomou, C., Djenic, J., Midha, R. and Johnston, M. (2003) Lymphatic Cerebrospinal Fluid Absorption Pathways in Neonatal Sheep Revealed by Subarachnoid Injection of Microfil. Neuropathology and Applied Neurobiology, 29, 563-573.
http://dx.doi.org/10.1046/j.0305-1846.2003.00508.x
[121]  Zakharov, A., Papaiconomou, C. and Johnston, M. (2004) Lymphatic Vessels Gain Access to Cerebrospinal Fluid through Unique Association with Olfactory Nerves. Lymphatic Research and Biology, 2,139-146. http://dx.doi.org/10.1089/lrb.2004.2.139
[122]  Cursiefen, C., Schlotzer-Schrehard, U., Küchle, M., Sorokin, L., Breiteneder-Geleff, S., Alitalo, K. and Jackson, D. (2002) Lymphatic Vessels in Vascularized Human Corneas: Immunohistochemical Investigation Using LYVE-1 and Podoplanin. Investigative Ophthalmology & Visual Science, 43, 2127-2135.
[123]  Andres, K.H., von During, M., Muszynski, K. and Schmidt, R.F. (1987) Nerve Fibres and Their Terminals of the Dura Mater Encephali of the Rat. Anatomy and Embryology, 175, 289-301.
http://dx.doi.org/10.1007/BF00309843
[124]  Brierley, J.B. and Field, E.J. (1948) The Connexions of the Spinal Sub-Arachnoid Space with the Lymphatic System. Journal of Anatomy, 82,153-166.
[125]  Kida, S., Pantazis, A. and Weller, R.O. (1993) CSF Drains Directly from the Subarachnoid Space into Nasal Lymphatics in the Rat, Anatomy, Histology and Immunological Significance. Neuropathology and Applied Neurobiology, 19, 480-488.
http://dx.doi.org/10.1111/j.1365-2990.1993.tb00476.x
[126]  Miura, M., Kato, S. and von Ludinghausen, M. (1998) Lymphatic Drainage of the Cerebrospinal Fluid from monkey Spinal Meninges with Special Reference to the Distribution of the Epidural Lymphatics. Archives of Histology and Cytology, 61, 277-286.
http://dx.doi.org/10.1679/aohc.61.277
[127]  Bozanovic-Sosic, R., Mollanji, R. and Johnston, M.G. (2001) Spinal and Cranial Contributions to Total Cerebrospinal Fluid Transport. American Journal of Physiology—Regulatory Integrative and Comparative Physiology, 281, R909-R916.
[128]  Carare, R., Bernardes-Silva, M., Newman, T., Page, A., Nicoll, J., Perry, V. and Weller, R. (2008) Solutes, but Not Cells, Drain from the Brain Parenchyma along Basement Membranes of Capillaries and Arteries: Significance for Cerebral Amyloid Angiopathy and Neuroimmunology. Neuropathology and Applied Neurobiology, 34, 131-144.
http://dx.doi.org/10.1111/j.1365-2990.2007.00926.x
[129]  Diem, A.K., Tan, M., Bressloff, N.W., Hawkes, C., Morris, A.W.J., Weller, R.O. and Carare, R.O. (2016) A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain. Frontier in Aging Neuroscience, 18, 1-11.
[130]  Aspelund, A., Antila, S., Proulx, S.T., Karlsen, T.V., Karaman, S., Detmar, M., Wiig, H. and Alitalo, K. (2015) A Dural Lymphatic Vascular System that Drains Brain Interstitial Fluid and Macromolecules. The Journal of Experimental Medicine, 212, 991-999.
http://dx.doi.org/10.1084/jem.20142290
[131]  Louveau, A., Smirnov, I., Keyes, T.J., Eccles, J.D., Sherin, J., Rouhani, J., Peske, D., Derecki, N.C., Castle, D., Mandell, J.W., Lee, K.S., Harris, T.H. and Kipnis, J. (2016) Structural and Functional Features of Central Nervous System Lymphatic Vessels. Nature, 523, 337-341.
http://dx.doi.org/10.1038/nature14432
[132]  Bulat, M. and Marijan Klarica, M. (2011) Recent Insights into a New Hydrodynamics of the Cerebrospinal Fluid. Brain Research Reviews, 659, 99-112.
http://dx.doi.org/10.1016/j.brainresrev.2010.08.002
[133]  Tanzi, R.E. (2012) The Genetics of Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2, a006296. http://dx.doi.org/10.1101/cshperspect.a006296
[134]  Yoon, S.S. and Jo, S.A. (2012) Mechanisms of Amyloid-Beta Peptide Clearance: Potential Therapeutic Targets for Alzheimer’s Disease. Biomolecules and Therapeutics, 20, 245-255.
http://dx.doi.org/10.4062/biomolther.2012.20.3.245
[135]  Chesser, A.S., Pritchard, S.M. and Johnson, G.V.W. (2013) Tau Clearance Mechanisms and Their Possible Role in the Pathogenesis of Alzheimer Disease. Frontiers in Neurology, 4, 122.
http://dx.doi.org/10.3389/fneur.2013.00122
[136]  Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R. and Nedergaard, M. (2013) Sleep Drives Metabolite Clearance from the Adult Brain. Science, 342, 373-377.
http://dx.doi.org/10.1126/science.1241224
[137]  Clark, C.N. and Warren, J.D. (2013) A Hypnic Hypothesis of Alzheimer’s Disease. Neurodegenerative Diseases, 12,165-176. http://dx.doi.org/10.1159/000350060
[138]  Mendelsohn, A.R. and Larrick, J.W. (2013) Sleep Facilitates Clearance of Metabolites from the Brain: Glymphatic Function in Aging and Neurodegenerative Diseases. Rejuvenation Research, 16, 518-523. http://dx.doi.org/10.1089/rej.2013.1530
[139]  Verkman, A.S., Devin, K., Binder, D.K., Bloch, O., Auguste, K. and Papadopoulos, M.C. (2006) Three Distinct Roles of Aquaporin-4 in Brain Function Revealed by Knockout Mice. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1758, 1085-1093.
http://dx.doi.org/10.1016/j.bbamem.2006.02.018
[140]  Pivot, M. (1980) Huangdi’s Internal Classic (Revised Translation). People’s Health Publishing House, Beijing, 155-173.
[141]  Xie, X.D., Wang, F.Y., Sun, Z.Y., Lo, P.L., Kong, K.C. and Xie, N.Z. (2011) Petrological and Mineralogical Studies of the Sibin Bian-Stone, a Material for Making Acupuncture Tools in Ancient China. Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), Trondheim, 1-5 August 2011, 773-780.
[142]  Lo, P.L., Kong, K.C., Huang, Y., Xiao, H. and Lu, Y. (2009) A Brief Introduction on the Clinical Application of Bian-Stone (Stone Needle): Experience of Kong Kit Chee in Hong Kong. International Journal of Clinical Acupuncture, 18, 194-198.
[143]  Kong, K.C., Lo, P.L. and Yuan, L. (2011) A Clinical Observation on Treating 30 Cases of Callan Pseudo Myopia with Bian Stone Therapy. International Journal of Acupuncture, 20, 19-24.
[144]  Shields, M.B. (2008) Normal-Tension Glaucoma: Is It Different from Primary Open-Angle Glaucoma? Current Opinion in Ophthalmology, 19, 85-88.
http://dx.doi.org/10.1097/ICU.0b013e3282f3919b
[145]  Berdahl, J.P., Fautsch, M.P., Stinnett, S.S. and Allingham, R. (2008) Intracranial Pressure in Primary Open Angle Glaucoma, Normal Tension Glaucoma, and Ocular Hypertension: A Case-Control Study. Investigative Ophthalmology & Visual Science, 49, 5412-5418.
http://dx.doi.org/10.1167/iovs.08-2228

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413