全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

听觉丘脑中MGB神经元的刺激–特异性适应
An Overview of Stimulus-Specific Adaptation of MGB Neurons in Auditory Thalamus

DOI: 10.12677/JPS.2016.42002, PP. 11-18

Keywords: 听觉丘脑,刺激–特异性适应,失匹配负电位
Auditory Thalamus
, Stimulus-Specific Adaptation, Mismatch Negativity Potential

Full-Text   Cite this paper   Add to My Lib

Abstract:

在听觉大脑中,一些神经元表现出对一个重复刺激的特异性适应(stimulus-specific adaptation, SSA)。SSA从中脑到初级听皮层(primary auditory cortex, AI)都存在。研究发现SSA强烈表达在听觉丘脑的主要核团,即内侧膝状体(medial geniculate body, MGB)的非丘系区域内。本文我们将重点介绍听觉丘脑MGB神经元的SSA研究和听觉中枢(即丘脑)在检测声音方面的重要性。
Some neurons show specific adaptation to repetitive stimulation (stimulus-specific adaptation, SSA) in auditory cortex (AC). SSA exists from mid-brain to primary auditory cortex (AI). Studies find that SSA intensely expressed in nucleus of auditory thalamus, the non-lemniscus area of medial geniculate body (MGB). Here we focus on the researches on SSA of MGB and the importance of the auditory thalamus in sound detecting.

References

[1]  Ayala, Y.A. and Malmierca, M.S. (2013) Stimulus-Specific Adaptation and Deviance Detection in the Inferior Colliculus. Frontiers in Neural Circuits, 6, 89. http://dx.doi.org/10.3389/fncir.2012.00089
[2]  Antunes, F.M., Nelken, I., Covey, E., et al. (2010b) Stimulus-Specific Adaptation in the Auditory Thalamus of the Anesthetized Rat. PLoS One, 5, Article ID: e14071. http://dx.doi.org/10.1371/journal.pone.0014071
[3]  Ulanovsky, N., Las, L. and Nelken, I. (2003) Processing of Low-Probability Sounds by Cortical Neurons. Nature Neuroscience, 6, 391-398. http://dx.doi.org/10.1038/nn1032
[4]  Antunes, F.M., Covey, E. and Malmierca, M.S. (2010a) Is There Stimulus-Specific Adaptation in the Medial Geniculate Body of the Rat? In: Lopez-Poveda, E.A., Palmer, A.R. and Meddis, R., Eds., The Neurophysi-Ological Bases of Auditory Perception, Springer, New York, 535-544. http://dx.doi.org/10.1007/978-1-4419-5686-6_49
[5]  Antunes, F.M. and Malmierca, M.S. (2011) Effect of Auditory Cortex Deactivation on Stimulus-Specific Adaptation in the Medial Geniculate Body. The Journal of Neuroscience, 31, 17306-17316. http://dx.doi.org/10.1523/JNEUROSCI.1915-11.2011
[6]  B?uerle, P., von der Behrens, W., Kossl, M., et al. (2011) Stimu-lus-Specific Adaptation in the Gerbil Primary Auditory Thalamus Is the Result of a Fast Frequency-Specific Habituation and Is Regulated by the Corticofugal System. The Journal of Neuroscience, 31, 9708-9722. http://dx.doi.org/10.1523/JNEUROSCI.5814-10.2011
[7]  Lee, C.C. and Winer, J.A. (2011) Convergence of Thalamic and Cortical Pathways in Cat Auditory Cortex. Hearing Research, 274, 85-94. http://dx.doi.org/10.1016/j.heares.2010.05.008
[8]  Winer, J.A., Miller, L.M., Lee, C.C., et al. (2005) Auditory Thalamocortical Transformation: Structure and Function. Trends in Neurosciences, 28, 255-263. http://dx.doi.org/10.1016/j.tins.2005.03.009
[9]  Donishi, T., Kimura, A., Okamoto, K., et al. (2006) ‘‘Ventral’’ Area in the Rat Auditory Cortex: A Major Auditory Field Connected with the Dorsal Division of the Medial Geniculate Body. Neuroscience, 141, 1553-1567. http://dx.doi.org/10.1016/j.neuroscience.2006.04.037
[10]  Smith, P.H., Bartlett, E.L. and Kowalkowski, A. (2006) Unique Combination of Anatomy and Physiology in Cells of the rat Paralaminar Thalamic Nuclei Adjacent to the Medial Geniculate Body. Journal of Comparative Neurology, 496, 314-334. http://dx.doi.org/10.1002/cne.20913
[11]  Campi, K.L., Bales, K.L., Grunewald, R., et al. (2010) Connections of Auditory and Visual Cortex in the Prairie Vole (Microtus ochrogaster): Evidence for Multisensory Processing in Primary Sensory Areas. Cerebral Cortex, 20, 89-108. http://dx.doi.org/10.1093/cercor/bhp082
[12]  Ojima, H. and Rouiller, E.M. (2011) Auditory Cortical Projections to the Medial Geniculate Body. In: Winer, J.A. and Schreiner, C.E., Eds., The Auditory Cortex, Springer, New York, 171-188. http://dx.doi.org/10.1007/978-1-4419-0074-6_8
[13]  Llano, D.A. and Sherman, S.M. (2008) Evidence for Nonreciprocal Organization of the Mouse Auditory Thalamocor- tical-Corticothalamic Projection Systems. Journal of Comparative Neurology, 507, 1209-1227.
[14]  Sambeth, A., Pakarinen, S., Ruohio, K., et al. (2009) Change Detection in Newborns Using a Multiple Deviant Paradigm: A Study Using Magnetoencephalography. Clinical Neurophysiology, 120, 530-538. http://dx.doi.org/10.1016/j.clinph.2008.12.033
[15]  Huotilainen, M., Kujala, A., Hotakainen, M., et al. (2005) Short-Term Memory Functions of the Human Fetus Recorded with Magnetoencephalography. NeuroReport, 16, 81-84. http://dx.doi.org/10.1097/00001756-200501190-00019
[16]  Grimm, S. and Escera, C. (2012) Auditory Deviance Detection Revisited: Evidence for a Hierarchical Novelty System. International Journal of Psychophysiology, 85, 88-92. http://dx.doi.org/10.1016/j.ijpsycho.2011.05.012
[17]  Slabu, L., Grimm, S. and Escera, C. (2012) Novelty Detection in the Human Auditory Brainstem. The Journal of Neuroscience, 32, 1447-1452. http://dx.doi.org/10.1523/JNEUROSCI.2557-11.2012
[18]  Ulanovsky, N., Las, L., Farkas, D. and Nelken, I. (2004) Multiple Time Scales of Adaptation in Auditory Cortex Neurons. The Journal of Neuroscience, 24, 10440-10453. http://dx.doi.org/10.1523/JNEUROSCI.1905-04.2004
[19]  Fishman, Y.I. and Steinschneider, M. (2012) Searching for the Mismatch Negativity in Primary Auditory Cortex of the Awake Monkey: Deviance Detection or Stimulus Specific Adaptation? The Journal of Neuroscience, 32, 15747-15758. http://dx.doi.org/10.1523/JNEUROSCI.2835-12.2012
[20]  Yu, Y.Q., Xiong, Y., Chan, Y.S., et al. (2004) In Vivo Intracellular Responses of the Medial Geniculate Neurones to Acoustic Stimuli in Anaesthetized Guinea Pigs. The Journal of Physiology, 560, 191-205. http://dx.doi.org/10.1113/jphysiol.2004.067678
[21]  Duque, D., Perez-Gonzalez, D., Ayala, Y.A., Palmer, A.R. and Malmierca, M.S. (2012) Topographic Distribution, Frequency, and Intensity Dependence of Stimulus-Specific Adaptation in the Inferior Colliculus of the Rat. The Journal of Neuroscience, 32, 17762-17774. http://dx.doi.org/10.1523/JNEUROSCI.3190-12.2012
[22]  Anderson, L.A., Christianson, G.B. and Linden, J.F. (2009) Stimulus-Specific Adaptation Occurs in the Auditory Thalamus. The Journal of Neuroscience, 29, 7359-7363. http://dx.doi.org/10.1523/JNEUROSCI.0793-09.2009
[23]  Malmierca, M.S., Cristaudo, S., Perez-Gonzalez, D. and Covey, E. (2009) Stimulus-Specific Adaptation in the Inferior Colliculus of the Anesthetized Rat. The Journal of Neuroscience, 29, 5483-5493. http://dx.doi.org/10.1523/JNEUROSCI.4153-08.2009
[24]  Beckers, G.J. and Gahr, M. (2012) Large-Scale Synchronized Activity during Vocal Deviance Detection in the Zebra Finch Auditory Forebrain. The Journal of Neuroscience, 32, 10594-10608. http://dx.doi.org/10.1523/JNEUROSCI.6045-11.2012
[25]  Yaron, A., Hershenhoren, I. and Nelken, I. (2012) Sensitivity to Complex Statistical Regularities in Rat Auditory Cortex. Neuron, 76, 603-615. http://dx.doi.org/10.1016/j.neuron.2012.08.025
[26]  Anderson, L.A. and Malmierca, M.S. (2013) The Effect of Auditory Cortex Deactivation on Stimulus-Specific Adaptation in the Inferior Colliculus of the Rat. European Journal of Neuroscience, 37, 52-62.
[27]  Nakamoto, K.T., Shackleton, T.M. and Palmer, A.R. (2010) Responses in the Inferior Colliculus of the Guinea Pig to Concurrent Harmonic Series and the Effect of Inactivation of Descending Controls. Journal of Neurophysiology, 103, 2050-2061. http://dx.doi.org/10.1152/jn.00451.2009
[28]  Robinson, B.L. and McAlpine, D. (2009) Gain Control Mechanisms in the Auditory Pathway. Current Opinion in Neurobiology, 19, 402-407. http://dx.doi.org/10.1016/j.conb.2009.07.006
[29]  Perez-Gonzalez, D. and Malmierca, M.S. (2012) Variability of the Time Course of Stimulus-Specific Adaptation in the Inferior Colliculus. Frontiers in Neural Circuits, 6, Article 107. http://dx.doi.org/10.3389/fncir.2012.00107
[30]  Antunes, R. and Moita, M.A. (2010) Discriminative Auditory Fear Learning Requires Both Tuned and Nontuned Auditory Pathways to the Amygdala. The Journal of Neuroscience, 30, 9782-9787. http://dx.doi.org/10.1523/JNEUROSCI.1037-10.2010
[31]  Aguillon, B.N., Nieto, J. and Escera, C. (2013) Response to Complex Patterns of Regularity in the Inferior Colliculus of the Anesthetized Rat. ARO 36th Annual Midwinter Meeting, Baltimore, 16-20 February 2013, 321.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133