|
心脏转录因子NKX2.5与先天性心脏病的关系
|
Abstract:
[1] | Torres-Cosme, J.L., Rolón-Porras, C., Aguinaga-Ríos, M., et al. (2016) Mortality from Congenital Heart Disease in Mexico: A Problem on the Rise. PloS ONE, 11, e0150422. http://dx.doi.org/10.1371/journal.pone.0150422 |
[2] | Chung, I.M. and Rajakumar, G. (2016) Genetics of Congenital Heart Defects: The NKX2-5 Gene, a Key Player. Genes (Basel), 7, e6. http://dx.doi.org/10.3390/genes7020006 |
[3] | Ouyang, P., Zhang, H., Fan, Z., et al. (2016) A R/K-Rich Motif in the C-Terminal of the Homeodomain Is Required for Complete Translocating of NKX2.5 Protein into Nucleus. Gene, 592, 276-280.
http://dx.doi.org/10.1016/j.gene.2016.07.022 |
[4] | Ouyang, P., Saarel, E., Bai, Y., et al. (2011) A de Novo Mutation in NKX2.5 Associated with Atrial Septal Defects, Ventricular Noncompaction, Syncope and Sudden Death. Clinica Chimica Acta, 412, 170-175.
http://dx.doi.org/10.1016/j.cca.2010.09.035 |
[5] | Akazawa, H. and Komuro, I. (2005) Cardiac Transcription Factor Csx/Nkx2-5: Its Role in Cardiac Development and Diseases. Pharmacology & Therapeutics, 107, 252-268. http://dx.doi.org/10.1016/j.pharmthera.2005.03.005 |
[6] | Baban, A., Postma, A.V., Marini, M., et al. (2014) Identification of TBX5 Mutations in a Series of 94 Patients with Tetralogy of Fallot. American Journal of Medical Genetics Part A, 164A, 3100-3107.
http://dx.doi.org/10.1002/ajmg.a.36783 |
[7] | Hirayama-Yamada, K., Kamisago, M., Akimoto, K., et al. (2005) Phenotypes with GATA4 or NKX2.5 Mutations in Familial Atrial Septal Defect. American Journal of Medical Genetics Part A, 135, 47-52.
http://dx.doi.org/10.1002/ajmg.a.30684 |
[8] | McCulley, D.J. and Black, B.L. (2012) Transcription Factor Pathways and Congenital Heart Disease. Current Topics in Developmental Biology, 100, 253-277. http://dx.doi.org/10.1016/B978-0-12-387786-4.00008-7 |
[9] | Akazawa, H. (2015) Mechanisms of Cardiovascular Homeostasis and Pathophysiology—From Gene Expression, Signal Transduction to Cellular Communication. Circulation Journal, 79, 2529-2536.
http://dx.doi.org/10.1253/circj.CJ-15-0818 |
[10] | 吴秀山. 心脏发育概论[M]. 北京: 科学出版社, 2006: 322-323. |
[11] | Bhat, V., Belaval, V., Gadabanahalli, K., Raj, V. and Shah, S. (2016) Illustrated Imaging Essay on Congenital Heart Diseases: Multimodality Approach part III: Cyanotic Heart Diseases and Complex Congenital Anomalies. Journal of Clinical and Diagnostic Research, 10, TE01-TE10. http://dx.doi.org/10.7860/jcdr/2016/21443.8210 |
[12] | Talwar, S., Kumar, M.V., Sreenivas, V., et al. (2016) Factors Determining Outcomes in Grown Up Patients Operated for Congenital Heart Diseases. Annals of Pediatric Cardiology, 9, 222-228.
http://dx.doi.org/10.4103/0974-2069.189113 |
[13] | Ouyang, P., Liu, Y., Huang, Z., et al. (2015) Readthrough on Transcription Factor NKX2.5 Premature Stop Codon by tRNA Suppressors. Hereditas, 37, 367-373. |
[14] | Schott, J.J., Benson, D.W., Basson, C.T., et al. (1998) Congenital Heart Disease Caused by Mutations in the Transcription Factor NKX2-5. Science, 281, 108-111. http://dx.doi.org/10.1126/science.281.5373.108 |
[15] | Draus, J.M., Hauck, M.A., Goetsch, M., et al. (2009) Investigation of Somatic NKX2-5 Mutations in Congenital Heart Disease. Journal of Medical Genetics, 46, 115-122. http://dx.doi.org/10.1136/jmg.2008.060277 |
[16] | Harvey, R.P. (1996) NK-2 Homeobox Genes and Heart Development. Developmental Biology, 178, 203-216.
http://dx.doi.org/10.1006/dbio.1996.0212 |
[17] | Zhou, M., Liao, Y. and Tu, X. (2015) The Role of Transcription Factors in Atrial Fibrillation. Journal of Thoracic Disease, 7, 152-158. |
[18] | Ellesoe, S.G., Johansen, M.M., Bjerre, J.V., et al. (2016) Familial Atrial Septal Defect and Sudden Cardiac Death: Identification of a Novel NKX2-5 Mutation and a Review of the Literature. Congenital Heart Disease, 11, 283-290.
http://dx.doi.org/10.1111/chd.12317 |
[19] | Tong, Y.F. (2016) Mutations of NKX2.5 and GATA4 Genes in the Development of Congenital Heart Disease. Gene, 588, 86-94. http://dx.doi.org/10.1016/j.gene.2016.04.061 |
[20] | Pabst, S., Wollnik, B., Rohmann, E., et al. (2008) A Novel Stop Mutation Truncating Critical Regions of the Cardiac Transcription Factor NKX2-5 in a Large Family with Autosomal-Dominant Inherited Congenital Heart Disease. Clinical Research in Cardiology, 97, 39-42. http://dx.doi.org/10.1007/s00392-007-0574-0 |
[21] | Gutierrez-Roelens, I., Roy, L.D., Ovaert, C., et al. (2006) A Novel CSX/NKX2-5 Mutation Causes Autosomal-Domi- nant AV Block: Are Atrial Fibrillation and Syncopes Part of the Phenotype? European Journal of Human Genetics, 14, 1313-1316. http://dx.doi.org/10.1038/sj.ejhg.5201702 |
[22] | Dentice, M., Cordeddu, V., Rosica, A., et al. (2006) Missense Mutation in the Transcription Factor NKX2-5: A Novel Molecular Event in the Pathogenesis of Thyroid Dysgenesis. Journal of Clinical Endocrinology & Metabolism, 91, 1428-1433. http://dx.doi.org/10.1210/jc.2005-1350 |
[23] | Lyons, I., Parsons, L.M., Hartley, L., et al. (1995) Myogenic and Morphogenetic Defects in the Heart Tubes of Murine Embryos Lacking the Homeo Box Gene NKX2-5. Genes & Development, 9, 1654-1666.
http://dx.doi.org/10.1101/gad.9.13.1654 |
[24] | Pashmforoush, M., Lu, J.T., Chen, H., et al. (2004) NKX2-5 Pathways and Congenital Heart Disease: Loss of Ventricular Myocyte Lineage Specification Leads to Progressive Cardiomyopathy and Complete Heart Block. Cell, 117, 373- 386. http://dx.doi.org/10.1016/S0092-8674(04)00405-2 |
[25] | Kasahara, H., Ueyama, T., Wakimoto, H., et al. (2003) NKX2.5 Homeoprotein Regulates Expression of Gap Junction Protein Connexin 43 and Sarcomere Organization in Postnatal Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 35, 243-256. http://dx.doi.org/10.1016/S0022-2828(03)00002-6 |
[26] | Toko, H., Zhu, W., Takimoto, E., et al. (2002) Csx/NKX2-5 Is Required for Homeostasis and Survival of Cardiac Myocytes in the Adult Heart. Journal of Biological Chemistry, 277, 24735-24743.
http://dx.doi.org/10.1074/jbc.M107669200 |
[27] | D’Amico, M.A., Ghinassi, B., Izzicupo, P., et al. (2016) IL-6 Activates PI3K and PKCζ Signaling and Determines Cardiac Differentiation in Rat Embryonic H9c2 Cells. Journal of Cellular Physiology, 231, 576-586.
http://dx.doi.org/10.1002/jcp.25101 |
[28] | Chen, M., Bi, L.-L., Wang, Z.-Q., et al. (2013) Time-Dependent Regulation of Neuregulin-1β/ErbB/ERK Pathways in Cardiac Differentiation of Mouse Embryonic Stem Cells. Molecular and Cellular Biochemistry, 380, 67-72.
http://dx.doi.org/10.1007/s11010-013-1658-y |
[29] | Shiojima, I., Komuro, I., Oka, T., et al. (1999) Context-Dependent Transcriptional Cooperation Mediated by Cardiac Transcription Factors Csx/NKX-2.5 and GATA-4. Journal of Biological Chemistry, 274, 8231-8239.
http://dx.doi.org/10.1074/jbc.274.12.8231 |
[30] | Mauritz, C., Schwanke, K., Reppel, M., et al. (2008) Generation of Functional Murine Cardiac Myocytes from Induced Pluripotent Stem Cells. Circulation, 118, 507-517. http://dx.doi.org/10.1161/CIRCULATIONAHA.108.778795 |