全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Propagation of Rayleigh Type Surface Wave in a Micropolar Piezoelectric Medium

DOI: 10.4236/oja.2016.64004, PP. 35-44

Keywords: Piezoelectric Medium, Micro-Rotation, Transverse Isotropy, Rayleigh Wave, Wave Speed

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present paper, the governing equations of a linear transversely isotropic micropolar piezoelectric medium are specialized for x-z plane after using symmetry relations in constitutive coefficients. These equations are solved for the general surface wave solutions in the medium. Following radiation conditions in the half-space, the particular solutions are obtained, which satisfy the appropriate boundary conditions at the stress-free surface of the half-space. A secular equation for Rayleigh type surface wave is obtained. An iteration method is applied to compute the non-dimensional wave speed of the Rayleigh surface wave for specific material parameters. The effects of piezoelectricity, non-dimensional frequency and non-dimensional material constant, charge free surface and electrically shorted surface are shown graphically on the wave speed of Rayleigh wave.

References

[1]  Kyame, J.J. (1949) Wave Propagation in Piezoelectric Crystals. Journal of Acoustical Society of America, 21, 159-167.
https://doi.org/10.1121/1.1906490
[2]  Pailloux, P.M.H. (1958) Piezoelectric itecalcul des vitesses de propagation. Le Journal de Physique etle Radium, 19, 523-526.
https://doi.org/10.1051/jphysrad:01958001905052300
[3]  Hruska, K. (1966) The Rate of Propagation of Ultrasonic Waves in ADP and in Voigt’s Theory. Czechoslovak Journal of Physics, B16, 446-453.
https://doi.org/10.1007/BF01696256
[4]  Auld, B.A. (1973) Acoustic Field and Waves in Solids. Wiley Interscience Publication, New York.
[5]  Parton, V.Z. and Kudryavtsev B.A. (1988) Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids. Gordan and Breach Science Publishers, New York.
[6]  Galassi, C., Dinescu, M., Uchino, K. and Sayer, M. (2000) Piezoelectric Materials: Advances in Science, Technology and Applications (Nato Science Partnership Subseries 3). Springer, Berlin.
[7]  Singh, B. (2010) Wave Propagation in a Prestressed Piezoelectric Half-Space. Acta Meccanica, 211, 337-344.
https://doi.org/10.1007/s00707-009-0234-8
[8]  Sharma, M.D. (2010) Piezoelectric Effect on the Velocities of Waves in an Anisotropic Piezo-Poroelastic Medium. Proceedings of the Royal Society A (Mathematical, Physical Engineering Sciences), 466, 1977-1992.
https://doi.org/10.1098/rspa.2009.0534
[9]  Salah, B., Njeh, A. and Ghozlen, M.H.B. (2012) A Theoretical Study of Propagation of Rayleigh Waves in Functionally Graded Piezoelectric Material (FGPM). Ultrasonics, 52, 306-314.
https://doi.org/10.1016/j.ultras.2011.08.016
[10]  Eringen, A.C. (1999) Microcontinuum Field Theories. I. Foundations and Solids. Springer, New York.
https://doi.org/10.1007/978-1-4612-0555-5
[11]  Eringen, A.C. (2003) Contiinuum Theory of Micromorphic Electromagnetic Thermoelastic Solids. International Journal of Engineering Science, 41, 653-665.
https://doi.org/10.1016/S0020-7225(02)00274-4
[12]  Eringen, A.C. (2004) Electromagnetic Theory of Microstretch Elasticity and Bone Modelling. International Journal of Engineering Science, 42, 231-242.
https://doi.org/10.1016/S0020-7225(03)00288-X
[13]  Craciun, I.A. (1995) Uniqueness Theorem in the Linear Theory of Piezoelectric Micropolar Thermoelasticity. International Journal of Engineering Science, 33, 1027-1036.
https://doi.org/10.1016/0020-7225(94)00106-T
[14]  Ciumasu, S.G. and Vieru, D. (1999) Variational Formulations for the Vibration of a Micropolar Piezoelectric Body. Journal of Acoustical Society of America, 105, 1240-1245.
https://doi.org/10.1121/1.425960
[15]  Zhilin, P.A. and Kolpakov, Y.E. (2005) A Micro-Polar Theory for Piezoelectric Materials, Lecture at XXXIII Summer School—Conference “Advanced Problems in Mechanics”, St. Petersburg.
[16]  Iesan, D. (2006) On the Microstretch Piezoelectricity. International Journal of Engineering Science, 44, 819-829.
https://doi.org/10.1016/j.ijengsci.2006.05.007
[17]  Aouadi, M. (2008) Aspects of Uniqueness in Micropolar Piezoelectric Bodies. Mathematics and Mechanics of Solids, 13, 499-512.
https://doi.org/10.1177/1081286507077106
[18]  Gales, C. (2012) Some Results in Micromorphic Piezoelectricity. European Journal of Mechanics—A/Solids, 31, 37-46.
https://doi.org/10.1016/j.euromechsol.2011.06.014
[19]  Chen, J. (2013) Micropolar Theory of Flexoelectricity. Journal of Advanced Mathematics and Applications, 1, 1-6.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133