全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis and Evaluation of Antituberculosis Activity of Substituted 2,7-Dimethylimidazo [1,2-a]Pyridine-3-Carboxamide Derivatives

DOI: 10.4236/ojmc.2016.64006, PP. 59-69

Keywords: Carboxamides, Imidazo[1,2-a]Pyridine, Tuberculosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

A series of substituted 2,7-dimethylimidazo[1,2-a]pyridine-3-carboxamides derivatives 5a-5m were synthesized through multi-step reactions. To achieve the synthesis of the desired compounds monobromo and dibromo substituted 2-amino-γ-picoline was reacted with ethyl 2-chloroacetoacetate. The crude ethyl ester subjected to hydrolysis in presence of lithium hydroxide to get 2a and 2b, with imidazo[1,2-a]pyri- dine-3-carboxylic acid to get 3a-3b, on treatment with substituted amines 4a-4g to get desired product 5a-5m in presence of EDCI and HOBt. The substituted imidazo[1,2-a]pyridine-3-carboxamides are characterized by FTIR, 1H-NMR, 13C-NMR and mass spectra. These newly synthesized compounds were tested in vitro for their antimycobacterial activity. The preliminary results of antituberculosis study showed that most of the synthesized compounds 5a-5m demonstrated moderate to good antituberculosis activity. Among the tested compounds 5b, 5d and 5e were found to be the most active with minimum inhibitory concentration (MIC) of 12.5 μg/mL against Mycobacterium tuberculosis (H37 RV strain) ATCC No-27294.

References

[1]  Katritzky, A., Xu, Y. and Tu, H. (2003) Regiospecific Synthesis of 3-Substituted Imidazo[1,2-a]Pyridines, Imidazo[1,2-a]Pyrimidines, and Imidazo[1,2-c]Pyrimidine. The Journal of Organic Chemistry, 68, 4935-4937.
https://doi.org/10.1021/jo026797p
[2]  Rival, Y., Grassy, G. and Michel, G. (1992) Synthesis and Antibacterial Activity of Some Imidazo[1,2-a]Pyrimidine Derivatives. Chemical and Pharmaceutical Bulletin, 40, 1170-1176.
https://doi.org/10.1248/cpb.40.1170
[3]  Moraski, G., Garrett, C., Lowell, M., Jeffrey, C., Philip, H., Helena, B., Mai, B., Torey, A., Juliane, O., Tanya, P. and Marvin, M. (2013) Advancement of Imidazo[1,2-a]Pyridines with Improved Pharmacokinetics and nM Activity vs. Mycobacterium tuberculosis. ACS Medicinal Chemistry Letters, 4, 675-679.
https://doi.org/10.1021/ml400088y
[4]  Rival, Y., Grassy, G., Taudou, A. and Ecalle, R. (1991) Antifungal Activity in Vitro of Some Imidazo[1,2-a]Pyrimidine Derivatives. European Journal of Medicinal Chemistry, 26, 13-18.
https://doi.org/10.1016/0223-5234(91)90208-5
[5]  Chaouni-Bendallah, A., Galtier, C., Allouchi, H. and Kherbeche, A. (2001) 3-Benzamido, Ureido and Thioureidoimidazo[1,2-a]Pyridine Derivatives as Potential Antiviral Agents. Chemical and Pharmaceutical Bulletin, 49, 1631-1635.
https://doi.org/10.1248/cpb.49.1631
[6]  Chezal, J., Paeshuyse, J., Gaumet, V., Canitrota, D., Maisonial, A., Lartigue, C., Gueiffier, A., Moreaua, E., Teulade, J., Chavignon, O. and Neyts, J. (2010) Synthesis and Antiviral Activity of an Imidazo[1,2-a]Pyrrolo[2,3-c]Pyridine Series against the Bovine Viral Diarrhea Virus. European Journal of Medicinal Chemistry, 45, 2044-2047.
https://doi.org/10.1016/j.ejmech.2010.01.023
[7]  Sanfilippo, P.J., Urbanski, M., Press, J.B. and Moore, J.B.J. (1998) Synthesis of (Aryloxy)Alkylamines. 2. Novel Imidazo-Fused Heterocycles with Calcium Channel Blocking and Local Anesthetic Activity. Journal of Medicinal Chemistry, 31, 2221-2227.
https://doi.org/10.1021/jm00119a026
[8]  Byth, K.F., Culshaw, J.D., Green, S., Oakes, S. and Thomaset, A.P. (2004) Imidazo[1,2-a]-Pyridines. Part 2: SAR and Optimisation of a Potent and Selective Class of Cyclin-Dependent Kinase Inhibitors. Bioorganic & Medicinal Chemistry Letters, 14, 2245-2248.
https://doi.org/10.1016/j.bmcl.2004.02.015
[9]  Dvey, D., Erhardt, P.W., Lumma, W.C. and Cantor, E. (1987) Cardiotonic Agents. 1. Novel 8-aryl Substituted Imidazo[1,2-a]- and -[1,5-a]Pyridines and Imidazo[1,5-a]Pyridinones as Potential Positive Inotropic Agents. Journal of Medicinal Chemistry, 30, 1337-1342.
https://doi.org/10.1021/jm00391a012
[10]  Kaminnski, J.J. and Doweyko, A.M. (1997) Antiulcer Agents. 6. Analysis of the in Vitro Biochemical and in Vivo Gastric Antisecretory Activity of Substituted Imidazo[1,2-a]-pyridines and Related Analogues Using Comparative Molecular Field Analysis and Hypothetical Active Site Lattice Methodologies. Journal of Medicinal Chemistry, 40, 427-436.
https://doi.org/10.1021/jm950700s
[11]  Zhonghui, L., Gregory, R., Anand, R. and Rui-Qin, L. (2008) Potent, Selective, Orally Bioavailable Inhibitors of Tumor Necrosis Factor-α Converting Enzyme (TACE): Discovery of Indole, Benzofuran, Imidazopyridine and Pyrazolopyridine P1’ Substituents. Bioorganic & Medicinal Chemistry Letters, 18, 1958-1962.
https://doi.org/10.1016/j.bmcl.2008.01.120
[12]  Gregory, R., Anand R., Zhonghui, L. and Rui-Qin, L. (2008) Potent, Exceptionally Selective, Orally Bioavailable Inhibitors of TNF-α Converting Enzyme (TACE): Novel 2-Substituted-1H-Benzo[d]Imidazol-1-yl)Methyl)Benzamide P1’ Substituents. Bioorganic & Medicinal Chemistry Letters, 18, 1577-1582.
https://doi.org/10.1016/j.bmcl.2008.01.075
[13]  Moraski, G.C., Miller, P.A., Bailey M.A., Ollinger, J., Parish, T., Boshoff, H.I., Cho, S., Anderson, J.R., Mulugeta, S., Franzblau, S.G. and Miller, M.J. (2015) Putting Tuberculosis (TB) to Rest: Transformation of the Sleep Aid, Ambien, and “Anagrams” Generated Potent Antituberculosis Agents. ACS Infectious Diseases, 13, 85-90.
https://doi.org/10.1021/id500008t
[14]  Abrahams, K.A., Jonathan A., Cox, G., Vickey, L., Loman, N.J., Pallen, M.J., Constantinidou, C., Fernández, R., Alemparte, C., Remuinán, M.J., Barros, D., Ballell, L. and Besra, G.S. (2012) Identification of Novel Imidazo[1,2-α]Pyridine Inhibitors Targeting M. tuberculosis QcrB. PLoS ONE, 7, e52951.
https://doi.org/10.1371/journal.pone.0052951
[15]  Moraski, G.C., Markley, L.D., Hipskind, P.A., Boshoff, H., Cho, S., Franzblau, S.G. and Miller, M.J. (2011) Advent of Imidazo[1,2-α]Pyridine-3-Carboxamides with Potent Multi- and Extended Drug Resistant Antituberculosis Activity. ACS Medicinal Chemistry Letters, 2, 466-470.
https://doi.org/10.1021/ml200036r
[16]  Li, L., Li, Z., Liu, M., Shen, W., Wang, B., Guo, H. and Lu, Y. (2016) Design, Synthesis and Antimycobacterial Activity of Novel Imidazo[1,2-α]Pyridine Amide-Cinnamamide Hybrids. Molecules, 21, 49.
https://doi.org/10.3390/molecules21010049
[17]  Samala, G., Nallangi, R., Devi, P.B., Saxena, S., Yadav, R., Sridevi, J.P., Yogeeswari, P. and Sriram, D. (2014) Identification and Development of 2-Methylimidazo[1,2-α]Pyridine -3-Carboxamides as Mycobacterium tuberculosis Pantothenate Synthetase Inhibitors. Bioorganic & Medicinal Chemistry, 22, 4223-4232.
https://doi.org/10.1016/j.bmc.2014.05.038
[18]  Mandewale, M.C., Thorat, B.R., Shelke, D. and Yamgar, R.S. (2015) Synthesis and Biological Evaluation of New Hydrazone Derivatives of Quinoline and Their Cu(II) and Zn(II) Complexes against Mycobacterium tuberculosis. Bioinorganic Chemistry and Applications, 2015, Article ID: 153015.
https://doi.org/10.1155/2015/153015
[19]  Mandewale, M.C., Thorat, B.R., Nivid, Y., Jadhav, R., Nagarsekar, A.S. and Yamgar, R.S. (2016) Synthesis, Structural Studies and Antituberculosis Evaluation of New Hydrazone Derivatives of Quinoline and Their Zn(II) Complexes. Journal of Saudi Chemical Society, In Press.
https://doi.org/10.1016/j.jscs.2016.04.003
[20]  Mandewale, M.C., Kokate, S., Thorat, B.R., Sawant, S.S. and Yamgar, R.S. (2016) Zinc Complexes of Hydrazone Derivatives Bearing 3,4-Dihydroquinolin-2(1h)-One Nucleus as New Anti-Tubercular Agents. Arabian Journal of Chemistry, In Press.
https://doi.org/10.1016/j.arabjc.2016.07.016
[21]  Mandewale, M.C., Thorat B.R. and Yamgar, R.S. (2015) Synthesis and Anti-Mycobacterium Study of Some Fluorine Containing Schiff Bases of Quinoline and Their Metal Complexes. Der Pharma Chemica, 7, 207-215.
[22]  Nivid, Y., Jadhav, B.S., Kenny, R.S., Nazirkar, B.P., Thorat, B.R., Mulgoankar, B.S. and Yamgar, R.S. (2015) Synthesis and Biological Activity Studies of Some Novel Substituted Imidazo[1,2-A]Pyridine. Heterocyclic Letters, 5, 177-184.
[23]  Lourenco, M.S., DeSouza, M.N., Pinheiro, A.C., Ferreira, M.L., Goncalves, R.B., Nogneira T.M. and Peralta, M.A. (2007) Evaluation of Anti-Tubercular Activity of Nicotinic and Isoniazid Analogues. Arkivoc. 15, 181-191.
[24]  Raman, N. (2005) Antibacterial Study of the Mannich Base, N-(1-Morpholino-Benzyl) Semicarbazide and Its Transition Metal(II) Complexes. Research Journal of Chemistry and Environment, 4, 9.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133