We report the effect of boron (nitrogen)-divacancy complex defects on the electronic properties of graphene nanoribbon by means of density functional theory. It is found that the defective subbands appear in the conduction band and valence band in accordance with boron (nitrogen)-divacancy defect, respectively; the impurity subbands don’t lead to the transition from the metallic characteristic to a semiconducting one. These complex defects affect the electronic band structures around the Fermi level of the graphene nanoribbon; the charge densities of these configurations have also changed distinctly. It is hoped that the theoretical results are helpful in designing the electronic device.
References
[1]
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. https://doi.org/10.1126/science.1102896
[2]
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438, 197-200. https://doi.org/10.1038/nature04233
[3]
Katsnelson, M.I., Novoselov, K.S. and Geim, A.K. (2006) Chiraltunnelling and the Klein paradox in Graphene. Nature Physics, 2, 620-625. https://doi.org/10.1038/nphys384
[4]
Young, A.F. and Kim, P. (2009) Quantum Transport and Klein Tunneling in Graphene Heterojunctions. Nature Physics, 5, 222-226. https://doi.org/10.1038/nphys1198
[5]
Gunlycke, D., Lawler, H.M. and White, C.T. (2007) Room-Temperature Ballistic Transport in Narrow Graphene Strips. Physical Review B, 75, Article ID: 085418.
https://doi.org/10.1103/physrevb.75.085418
[6]
Du, X., Skachko, I., Barker, A. and Andrei, E.Y. (2008) Approaching Ballistic Transport in Suspended Graphene. Nature Nanotechnology, 3, 491-495.
https://doi.org/10.1038/nnano.2008.199
[7]
Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P. and Geim, A.K. (2007) Room-Temperature Quantum Hall Effect in Graphene. Science, 315, 1379. https://doi.org/10.1126/science.1137201
[8]
Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J. and Dai, H. (2008) Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors. Physical Review Letters, 100, Article ID: 206803. https://doi.org/10.1103/physrevlett.100.206803
[9]
Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.-Y., Grill, A. and Avouris, Ph. (2010) 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science, 327, 662. https://doi.org/10.1126/science.1184289
[10]
Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. and Aizenberg, J. (2007) Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns. Science, 315, 487-490. https://doi.org/10.1126/science.1135516
[11]
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. and Novoselov, K.S. (2007) Detection of Individual Gas Molecules Adsorbed on Graphene. Nature Materials, 6, 652-655. https://doi.org/10.1038/nmat1967
[12]
Derycke, V., Martel, R., Appenzeller, J. and Avouris, P. (2001) Carbon Nanotube Inter-and Intramolecular Logic Gates. Nano Letters, 1, 453-456. https://doi.org/10.1021/nl015606f
[13]
Wehling, T.O., et al. (2008) Molecular Doping of Graphene. Nano Letters, 8, 173-177.
https://doi.org/10.1021/nl072364w
[14]
Terrones, M., et al. (1996) Pyrolytically Grown BxCyNz Nanomaterials: Nanofibres and Nanotubes. Chemical Physics Letters, 257, 576-582.
https://doi.org/10.1016/0009-2614(96)00594-5
[15]
Pedersen, T.G., Flindt, C., Pedersen, J., Mortensen, N.A., Jauho, A.P. and Pedersen, K. (2008) Graphene Antidot Lattices: Designed Defects and Spin Qubits. Physical Review Letters, 100, Article ID: 136804. https://doi.org/10.1103/physrevlett.100.136804
[16]
Rosales, L., Pacheco, M., Barticevic, Z., León, A., Latgé, A. and Orellana, P.A. (2009) Transport Properties of Antidotsuperlattices of Graphene Nanoribbons. Physical Review B, 80, Article ID: 073402. https://doi.org/10.1103/PhysRevB.80.073402
[17]
Carlsson, J.M. and Scheffler, M. (2006) Structural, Electronic, and Chemical Properties of Nanoporous Carbon. Physical Review Letters, 96, Article ID: 046806.
https://doi.org/10.1103/physrevlett.96.046806
[18]
Jaskólski, W., Chico, L. and Ayuela, A. (2015) Divacancy-Induced Ferromagnetism in Graphene Nanoribbons. Physical Review B, 91, Article ID: 165427.
https://doi.org/10.1103/physrevb.91.165427
[19]
Zhang, H., Yu, G., Chen, W., Guan, J. and Huang, X. (2015) A First-Principles Investigation on the Effect of the Divacancy Defect on the Band Structures of Boron Nitride (BN) Nanoribbons. Physica E, 69, 65-74. https://doi.org/10.1016/j.physe.2015.01.024
[20]
Chakrabarty, S., Abdul Wasey, A.H.M., Thapa, R. and Das, G.P. (2015) First Principles Design of Divacancy Defected Graphene Nanoribbon Based Rectifying and Negative Differential Resistance Device. AIP Advances, 5, Article ID: 087163.
https://doi.org/10.1063/1.4929576
[21]
Ordejón, P., Artacho, E. and Soler, J.M. (1996) Self-Consistent Order-N Density-Functional Calculations for Very Large Systems. Physical Review B, 53, R10441-R10444.
https://doi.org/10.1103/PhysRevB.53.R10441
[22]
Sánchez-Portal, D., Ordejón, P., Artacho, E. and Soler, J.M. (1997) Density-Functional Method for Very Large Systems with LCAO Basis Sets. International Journal of Quantum Chemistry, 65, 453-461.
https://doi.org/10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V
[23]
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P. and Sánchez-Portal, D. (2002) The SIESTA Method for ab Initio Order-N Materials Simulation. Journal of Physics: Condensed Matter, 14, 2745-2779. https://doi.org/10.1088/0953-8984/14/11/302
[24]
Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[25]
Huang, B., Yan, Q., Zhou, G., Wu, J., Gu, B., Duan, W. and Liu, F. (2007) Making a Field Effect Transistor on a single Graphene Nanoribbon by Selective Doping. Applied Physics Letters, 91, Article ID: 253122. https://doi.org/10.1063/1.2826547