全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Stress Response and Apoptosis on Leucocytes in TIVA versus Balanced Anesthesia

DOI: 10.4236/ojapo.2017.61001, PP. 1-16

Keywords: Propofol-Sevoflurane-Hemodynamics Response-Cortisol-Apoptosis in Leucocytes-Annexin V-Propidium Iodide

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: The aim of this study was to assess the stress response and apoptosis on leucocytes, in patients under two different anesthetics techniques. Methods: Thirty patients ASA I-II were prospectively randomized into two groups to receive either total intravenous anesthesia with propofol-remifentanil (TIVA Group, n = 15) or balanced inhalation anesthesia with sevoflurane-remifentanil (BAL Group, n = 15). The hemodynamic response: systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) at different time points: baseline, after intubation, after skin incision and at the end of surgery, was measured along with plasma levels of lactate, glucose, cortisol and leucocytes count. The biomarkers of apoptosis (Annexin V and Propidium Iodide) in neutrophils, monocytes and lymphocytes were evaluated at baseline, intraoperatively and two hours after surgery. Results: The study groups were comparable with respect to anthropometric data. No significant intergroup differences in SBP and DBP were revealed. The HR in the BAL group was lower after intubation (p = 0.007). In both groups, lactate, plasma glucose, cortisol and leucocytes count remained stable during surgery and two hours post-operatively. In the BAL group there were significant differences in Annexin V in neutrophils, baseline moment (p = 0.010). No significant differences were found in apoptosis markers (Annexin V and Propidium Iodide) in neutrophils, monocytes and lymphocytes, at different time points. Conclusion: Both TIVA and BAL were effective in suppressing the surgical stress, without inducing apoptosis in immune cells, in patients undergoing VCL.

References

[1]  Scholl, R., Bekker, A. and Babu, R. (2012) Neuroendocrine and Immune Response to Surgery. The Internet Journal of Anesthesiology, 30, 3.
[2]  Kelbel, I. and Weiss, M. (2001) Anesthetics and Immune Function. Current Opinion in Anesthesiology, 14, 685-691.
https://doi.org/10.1097/00001503-200112000-00015
[3]  Boomershine, C.S., Wo, T. and Zwilling, B.S. (2001) Neuroendocrine Regulation of Macrophage and Neutrophil Function. In: Ader, R., Felten, D.L. and Cohen, N., Eds., Psychoneuroimmunology, 3th Edition, Academic Press, San Diego, 289-300.
[4]  Salo, M., Halsey, M. and Moudgil, G.C. (2001) Frontiers in Anesthesia: Allergy, Immunology and Anesthetic Action. Acta Anaesthesiologica Scandinavica, 45, 1193-1195.
https://doi.org/10.1034/j.1399-6576.2001.451003.x
[5]  Zhang, Y., Dong, Y., Wu, X., et al. (2010) The Mitochondrial Pathway of Anesthetic Isofluorane-Induced Apoptosis. The Journal of Biological Chemistry, 285, 4025-4037.
https://doi.org/10.1074/jbc.M109.065664
[6]  Matsuoka, H., Kurosawa, S., Horinouchi, T., Kato, M. and Hashimoto, Y. (2001) Inhalation Anesthetics Induce Apoptosis in Normal Peripheral Lymphocytes in Vitro. Anesthesiology, 95, 1467-1472.
https://doi.org/10.1097/00000542-200112000-00028
[7]  Osman, E., Khafagy, H., Yasser, M., et al. (2012) In Vivo Effects of Different Anesthetic Agents on Apoptosis. Korean Journal of Anesthesiology, 63, 18-24.
https://doi.org/10.4097/kjae.2012.63.1.18
[8]  Lasinska-Kowara, M., Fardel-Reszkiewicz, E., Owczuk, R., et al. (2009) Effects of Sevoflurane versus Target-Controlled Infusions of Propofol on Hemodynamics during Elective Breast Surgery in Healthy Women. Anestezjol Intens Ter, 41, 135-139.
[9]  Ahmed, W. and Hamdi, N. (2012) Effects of Different Anesthetic Techniques on Inflammatory Cytokines Response and T Lymphocyte Subsets in Patients Undergoing Lower Abdominal Surgery. Ain-Shams Journal of Anaesthesiology, 5, 43-55.
[10]  Mandel, J. (2014) Considerations for the Use of Short-Acting Opioids in General Anesthesia. Journal of Clinical Anesthesia, 26, S1-S7.
https://doi.org/10.1016/j.jclinane.2013.11.003
[11]  Soto, G., Rebora, C., Yacuzzi, M., Ciancio, M. and Harvey, G. (2013) Computer Controlled Infusion of Remifentanil: Effects, Requirements and Effect Concentrations. Revista Argentina de Anestesiología, 71, 98-115.
[12]  Ihn, C.H., Joo, J.D., Kim, D.W., et al. (2009) Comparison of Stress Hormone Response, Interleukin-6 and Anesthetic Characteristics of Two Anesthetic Techniques: Volatile Induction and Maintenance of Anesthesia Using Sevoflurane versus Total Intravenous Anaesthesia Using Propofol and Remifentanil. Journal of International Medical Research, 37, 1760-1771.
https://doi.org/10.1177/147323000903700612
[13]  Mujagi, Z. and Cicko, E. (2007) Serum Levels of Glucose and Lactate in Patients Treated under Total Intravenous Anesthesia with Propofol-Fentanyl and under Balanced Anesthesia with Isofluorane-Fentanyl. Biochemical Medicine, 17, 71-78.
https://doi.org/10.11613/BM.2007.007
[14]  Omera, M. (2006) Do Volatile Inhalation Anesthetics Modify the Immune Response in Surgical Patients? Alexandria Journal of Anaesthesia and Intensive Care, 9, 34-44.
[15]  Graziola, E., Elena, G., Gobbo, M., Mendez, F., Colucci, D. and Puig, N. (2005) Stress, Hemodynamic and Immunological Responses to Inhaled and Intravenous Anesthetic Techniques for Video-Assisted Laparoscopic Cholecystectomy. Revista Espanola de Anestesiología y Reanimación, 52, 208-216.
[16]  Marana, E., Anetta, M., Meo, F., Parpaglioni, M., Galeone, M., Maussier, M. and Marana, R. (2003) Sevoflurane Improves the Neuroendocrine Stress Response during Laparoscopic Pelvic Surgery. Canadian Journal of Anesthesia, 50, 348-354.
https://doi.org/10.1007/BF03021031
[17]  Ionescu, D., Hadade, A., Mocan, T. and Margarit, S. (2014) The Influence of a Prophylactic Dose of Dexamethasone for Postoperative Nausea and Vomiting on Plasma Interleukin Concentrations after Laparoscopic Cholecystectomy. A Randomized Trial. European Journal of Anaesthesiology, 31, 204-211.
https://doi.org/10.1097/EJA.0b013e3283642a01
[18]  Elena, G. (2008) Evaluation of Neutrophils Function in Patients under General Anesthesia Scheduled for Laparoscopic Cholecystectomy. Revista Argentina de Anestesiología, 66, 399-417.
[19]  Colucci, D.G., Puig, N. and Hernandez-Pando, R. (2013) Influence of Anaesthesic Drugs on Immune Response: From Inflammation to Immunosuppression. OA Anaesthesics, 30, 3-21.
[20]  Loop, T., Dovi-Akue, D., Frick, M., Roesslein, M., Egger, L., Humar, M., et al. (2005) Volatile Anesthetics Induce Caspase-Dependent, Mitochondria-Mediated Apoptosis in Human T Lymphocytes in Vitro. Anesthesiology, 102, 1147-1157.
https://doi.org/10.1097/00000542-200506000-00014
[21]  Yang, H., Liang, G., Hawking, B., Madesh, M., Pierwola, A. and Wei, H. (2008) Inhalational Anesthetics Induce Cell Damage by Disruption of Intracellular Calcium Homeostasis with Different Potencies. Anesthesiology, 109, 243-250.
https://doi.org/10.1097/ALN.0b013e31817f5c47
[22]  Bezerra, F., Bezerra, N., Oliveira, B., Augusto, A. and das Gracas, M. (2010) Evaluation of Antioxidant Parameters in Eats Treated with Sevoflurane. Revista Brasileira de Anestesiologia, 20, 93-97.
[23]  Wong, C., Liu, T.Z., Chye, S.M., Lu, F.J., Liu, Y., Lin, Z. and Chen, C.H. (2006) Sevoflurane Induced Oxidative Stress and Cellular Injury in Human Peripheral Polymorphonuclear Neutrophils. Food and Chemical Toxicology, 44, 1399-1407.
https://doi.org/10.1016/j.fct.2006.03.004
[24]  Lee, Y.M., Song, B. and Yeum, K. (2015) Impact of Volatile Anesthetics on Oxidative Stress and Inflammation. BioMed Research International, 2015, Article ID: 242709.
https://doi.org/10.1155/2015/242709
[25]  Li Volti, G., Murabito, P., et al. (2006) Antioxidant Properties of Propofol: When Oxidative Stress Sleeps with Patients. EXCLI Journal, 5, 25-32.
[26]  Cavalca, V., Colli, S., Veglia, F., Eligini, S., Zingaro, L., Squellerio, I., et al. (2008) Anesthetics Propofol Enhance γ-Tocopherol Levels in Patients Undergoing Cardiac Surgery. Anesthesiology, 108, 988-997.
https://doi.org/10.1097/ALN.0b013e318173efb4
[27]  Allaouchiche, B., Debon, R., et al. (2001) Oxidative Stress Status during Exposure to Propofol, Sevoflurano and Desfluorano. Trauma, Critical Care, 93, 981-985.
[28]  Erbas, M., Demiraran, Y., et al. (2015) Comparison of Effects on the Oxidant/Antioxidant System of Sevoflurane, Desflurane and Propofol Infusion during General Anesthesia. Revista Brasileira de Anestesiologia, 65, 68-72.
https://doi.org/10.1016/j.bjan.2014.05.002
[29]  Chen, G., Gong, M., Yan, M. and Zhang, X. (2013) Sevoflurane Induces Endoplasmic Reticulum Stress Mediated Apoptosis in Hippocampal Neurons of Aging Rats. PLoS ONE, 8, e57870.
https://doi.org/10.1371/journal.pone.0057870
[30]  Zhuo, Z. (2012) Are Volatile Anesthetics Neuroprotective or Neurotoxic? Medical Gas Research, 2, 10.
http://www.medicalgasresearch.com/content/2/1/10
https://doi.org/10.1186/2045-9912-2-10
[31]  Yu, P., Zhang, J., Yu, S., Luo, Z., Hua, F., Yuan, L., et al. (2015) Protective Effect of Sevoflurane Post Conditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagy Clearance. PLoS ONE, 10, e0134666.
https://doi.org/10.1371/journal.pone.0134666
[32]  Dong, Y., Zhang, G., Zhang, B., Moir, R., Xia, W., Marcantonio, E., et al. (2009) The Common Anesthetic Sevoflurane Induce Apoptosis and Increases β-Amyloid Protein Levels. Archives of Neurology, 66, 620-631.
https://doi.org/10.1001/archneurol.2009.48

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133