全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cognitive Supervisor for an Autonomous Swarm of Robots

DOI: 10.4236/ica.2017.81004, PP. 44-65

Keywords: Autonomous Robotic Swarm, Cognitive Supervisor, Hippocampus Path Integration and Navigation, Hamiltonian Path Integral, Modal Logic, Nonlinear Schr?dinger Equation, Reasoning about Actions and Plans

Full-Text   Cite this paper   Add to My Lib

Abstract:

As a sequel to our recent work [1], in which a control framework was developed for large-scale joint swarms of unmanned ground (UGV) and aerial (UAV) vehicles, the present paper proposes cognitive and meta-cognitive supervisor models for this kind of distributed robotic system. The cognitive supervisor model is a formalization of the recently Nobel-awarded research in brain science on mammalian and human path integration and navigation, performed by the hippocampus. This is formalized here as an adaptive Hamiltonian path integral, and efficiently simulated for implementation on robotic vehicles as a pair of coupled nonlinear Schr?dinger equations. The meta-cognitive supervisor model is a modal logic of actions and plans that hinges on a weak causality relation that specifies when atoms may change their values without specifying that they must change. This relatively simple logic is decidable yet sufficiently expressive to support the level of inference needed in our application. The atoms and action primitives of the logic framework also provide a straight-forward way of connecting the meta-cognitive supervisor with the cognitive supervisor, with other modules, and to the meta-cognitive supervisors of other robotic platforms in the swarm.

References

[1]  Ivancevic, V. and Yue, Y. (2016) Hamiltonian Dynamics and Control of a Joint Autonomous Land-Air Operation. Nonlinear Dynamics, 84, 1853-1865.
https://doi.org/10.1007/s11071-016-2610-y
[2]  McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I. and Moser, M.-B. (2006) Path Integration and the Neural Basis of the Cognitive Map. Nature Reviews Neuroscience, 7, 663-678. https://doi.org/10.1038/nrn1932
[3]  Moser, E.I., Kropff, E. and Moser, M.-B. (2008) Place Cells, Grid Cells, and the Brain’s Spatial Representation System. Annual Review of Neuroscience, 31, 69-89.
https://doi.org/10.1146/annurev.neuro.31.061307.090723
[4]  O’Keefe, J., Burgess, N., Donnett, J.G., Jeffery, K.J. and Maguire, E.A. (1998) Place Cells, Navigational Accuracy, and the Human Hippocampus. Philosophical Transactions of the Royal Society of London A, 353, 1333-1340. https://doi.org/10.1098/rstb.1998.0287
[5]  Monteiro, S., Vaz, M. and Bicho, E. (2004) Attractor Dynamics Generates Robot Formation, from Theory to Implementation. International Conference on Robotics and Automation, Vol. 3, New Orleans, 26 April-1 May 2004, 2582-2586. https://doi.org/10.1109/robot.2004.1307450
[6]  O’Keefe, J. (1976) Place Units in the Hippocampus of the Freely Moving Rat. Experimental Neurology, 51, 78-109. https://doi.org/10.1016/0014-4886(76)90055-8
[7]  O’Keefe, J. and Nadel, L. (1978) The Hippocampus as a Cognitive Map. Clarendon Press, Oxford.
[8]  Ivancevic, V. and Ivancevic, T. (2008) Complex Nonlinearity, Chaos, Phase Transitions, Topology Change and Path Integrals. Springer, New York.
[9]  Ivancevic, V. and Reid, D. (2015) Complexity and Control, towards a Rigorous Behavioral Theory of Complex Dynamical Systems. World Scientific, Singapore.
[10]  Feynman, R.P. (1951) An Operator Calculus Having Applications in Quantum Electrodynamics. Physical Review, 84, 108-128. https://doi.org/10.1103/PhysRev.84.108
[11]  Feynman, R.P. (1948) Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics, 20, 267. https://doi.org/10.1103/RevModPhys.20.367
[12]  Ivancevic, V., Reid, D. and Scholz, J. (2014) Action-Amplitude Approach to Controlled Entropic Self-Organization. Entropy, 16, 2699-2712. https://doi.org/10.3390/e16052699
[13]  Hopfield, J.J. (1982) Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences, 79, 2554-2558.
https://doi.org/10.1073/pnas.79.8.2554
[14]  Hopfield, J.J. (1984) Neurons with Graded Response Have Collective Computational Properties Like Those of Two-State Neurons. Proceedings of the National Academy of Sciences, 81, 3088-3092. https://doi.org/10.1073/pnas.81.10.3088
[15]  Service, R.F. (2014) The Brain Chip. Science, 345, 614-668.
https://doi.org/10.1126/science.345.6197.614
[16]  Ivancevic, V. and Ivancevic, T. (2009) Quantum Neural Computation. Springer, Berlin.
[17]  Ivancevic, V. and Reid, D. (2012) Turbulence and Shock-Waves in Crowd Dynamics. Nonlinear Dynamics, 68, 285-304. https://doi.org/10.1007/s11071-011-0227-8
[18]  Ivancevic, V. (2010) Adaptive-Wave Alternative for the Black-Scholes Option Pricing Model. Cognitive Computation, 2, 17-30. https://doi.org/10.1007/s12559-009-9031-x
[19]  Ivancevic, V. (2011) Adaptive Wave Models for Sophisticated Option Pricing. Journal of Mathematical Finance, 1, 41-49. https://doi.org/10.4236/jmf.2011.13006
[20]  Manakov, S.V. (1974) On the Theory of Two-Dimensional Stationary Self-Focusing of Electromagnetic Waves. Soviet Physics, 38, 248-253. (In Russian)
[21]  Lax, P. (1968) Integrals of Nonlinear Equations of Evolution and Solitary Waves. Communications on Pure and Applied Mathematics, 21, 467-490.
https://doi.org/10.1002/cpa.3160210503
[22]  Haelterman, M. and Sheppard, A.P. (1994) Bifurcation Phenomena and Multiple Soliton Bound States in Isotropic Kerr Media. Physical Review E, 49, 3376-3381.
https://doi.org/10.1103/PhysRevE.49.3376
[23]  Yang, J. (1997) Classification of the Solitary Wave in Coupled Nonlinear Schrödinger Equations. Physica D, 108, 92-112. https://doi.org/10.1016/S0167-2789(97)82007-6
[24]  Hanm, S.-H. and Koh, I.G. (1999) Stability of Neural Networks and Solitons of Field Theory. Physical Review E, 60, 7608-7611. https://doi.org/10.1103/PhysRevE.60.7608
[25]  Fisher, M.J. and Ladner, R.E. (1979) Propositional Dynamic Logic of Regular Programs. Journal of Computer and System Sciences, 18, 194-211. https://doi.org/10.1016/0022-0000(79)90046-1
[26]  Zhang, D. and Foo, N.Y. (2001) EPDL, a Logic for Causal Reasoning. Proceedings of the IJCAI 2001, Seattle, 4-10 August 2001, 131-138.
[27]  Hughes, G.E. and Cresswell, M.J. (1996) A New Introduction to Modal Logic. Routledge, Abingdon-on-Thames. https://doi.org/10.4324/9780203290644
[28]  Castilho, M.A., Herzig, A. and Varzinczak, I. (2002) It Depends on the Context! A Decidable Logic of Actions and Plans Based on a Ternary Dependence Relation. NMR’02, Toulouse, 19-21 April 2002, 343-348.
[29]  Castilho, M.A., Gasquet, O. and Herzig, A. (1999) Formalizing Action and Change in Modal Logic 1, the Frame Problem. Journal of Logic and Computation, 9, 701-735.
https://doi.org/10.1093/logcom/9.5.701
[30]  Hebb, D.O. (1949) The Organization of Behavior. Wiley, New York.
[31]  O’Keefe, J. and Dostrovsky, J. (1971) The Hippocampus as a Spatial Map, Preliminary Evidence from Unit Activity in the Freely Moving Rat. Brain Research, 34, 171-175.
https://doi.org/10.1016/0006-8993(71)90358-1
[32]  Mittelstaedt, M.L. and Mittelstaedt, H. (1980) Homing by Path Integration in a Mammal. Naturwissenschaften, 67, 566-567. (In German) https://doi.org/10.1007/BF00450672
[33]  Ranck, J.B. (1985) Electrical Activity of the Archicortex. Akademiai Kiado, Budapest, 217-220.
[34]  Bostock, E., Muller, R.U. and Kubie, J.L. (1991) Experience-Dependent Modifications of Hippocampal Place Cell Firing. Hippocampus, 1, 193-205.
https://doi.org/10.1002/hipo.450010207
[35]  McNaughton, B.L., Chen, L.L. and Markus, E.J. (1991) “Dead Reckoning”, Landmark Learning, and the Sense of Direction, a Neurophysiological and Computational Hypothesis. Journal of Cognitive Neuroscience, 3, 190-202. https://doi.org/10.1162/jocn.1991.3.2.190
[36]  Wilson, M.A. and McNaughton, B.L. (1993) Dynamics of the Hippocampal Ensemble Code for Space. Science, 261, 1055-1058. https://doi.org/10.1126/science.8351520
[37]  O’Keefe, J. and Recce, M.L. (1993) Phase Relationship between Hippocampal Place Units and the EEG Theta Rhythm. Hippocampus, 3, 317-330. https://doi.org/10.1002/hipo.450030307
[38]  McNaughton, B.L., et al. (1996) Deciphering the Hippocampal Polyglot, the Hippocampus as a Path Integration System. Journal of Experimental Biology, 199, 173-185.
[39]  Tsodyks, M. and Sejnowski, T. (1995) Associative Memory and Hippocampal Place Cells. International Journal of Neural Systems, 6, S81-S86.
[40]  Zhang, K. (1996) Representation of Spatial Orientation by the Intrinsic Dynamics of the Head-Direction Cell Ensemble, a Theory. Journal of Neuroscience, 16, 2112-2126.
[41]  Samsonovich, A. and McNaughton, B.L. (1997) Path Integration and Cognitive Mapping in a Continuous Attractor Neural Network Model. Journal of Neuroscience, 17, 5900-5920.
[42]  O’Keefe, J. (1999) Do Hippocampal Pyramidal Cells Signal Non-Spatial as Well as Spatial Information? Hippocampus, 9, 352-364.
https://doi.org/10.1002/(SICI)1098-1063(1999)9:4<352::AID-HIPO3>3.0.CO;2-1
[43]  Fyhn, M., Molden, S., Witter, M.P., Moser, E.I. and Moser, M.-B. (2004) Spatial Representation in the Entorhinal Cortex. Science, 305, 1258-1264. https://doi.org/10.1126/science.1099901
[44]  Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. and Moser, E.I. (2005) Microstructure of a Spatial Map in the Entorhinal Cortex. Nature, 436, 801-806.
https://doi.org/10.1038/nature03721
[45]  Witter, M.P. and Moser, E.I. (2006) Spatial Representation and the Architecture of the Entorhinal Cortex. Trends in Neurosciences, 29, 671-678.
https://doi.org/10.1016/j.tins.2006.10.003
[46]  O’Keefe, J. and Burgess, N. (2005) Dual Phase and Rate Coding in Hippocampal Place Cells, Theoretical Significance and Relationship to Entorhinal Grid Cells. Hippocampus, 15, 853-866.
https://doi.org/10.1002/hipo.20115
[47]  Solstad, T., Moser, E.I. and Einevoll, G.T. (2006) From Grid Cells to Place Cells, a Mathematical Model. Hippocampus, 16, 1026-1031. https://doi.org/10.1002/hipo.20244
[48]  Burgess, N., Barry, C. and O’Keefe, J. (2007) An Oscillatory Interference Model of Grid Cell Firing. Hippocampus, 17, 801-812. https://doi.org/10.1002/hipo.20327
[49]  Yartsev, M.M. and Ulanovsky, N. (2013) Representation of Three-Dimensional Space in the Hippocampus of Flying Bats. Science, 340, 367-372. https://doi.org/10.1126/science.1235338
[50]  Yartsev, M.M. (2013) Space Bats, Multidimensional Spatial Representation in the Bat. Science, 342, 573-574. https://doi.org/10.1126/science.1245809
[51]  Turing A.M. (1990) The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37-72. https://doi.org/10.1007/BF02459572

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413