全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The New Molecular Entity Evolocumab, One Kind of PCSK9 Inhibitor, Reduce Plasma Small Size LDL-Cholesterol Levels by Using a New Standardized Method of Measuring LDL Size

DOI: 10.4236/ojmip.2017.71001, PP. 1-23

Keywords: PCSK9 Inhibitor, Evolocumab, LDL Heterogeneicity, Small Size LDL, 3% PAGE, 2% - 16% GGE

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aims: There has been no evidence on the effects of evolocumab, protein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, on small size LDL. We observationally investigated the efficacy and side effects of evolocumab on the LDL subfraction particle diameter using PAGE system for lipoprotein analysis. Methods: We defined 30 patients with high-risk hyperlipidemia. As for analysis of LDL subfraction profile, we used polyacrylamide gel electrophoresis three methods: 1) 3% nondenatured poly-acrylamide gel electrophoresis method (3%PAGE), 2) 2% - 16% nondenatured poly-acrylamide gradient gel electro-phoresis method (2% - 16% GGE) and 3) 2.7% - 5% GGE. Evolocumab 140 mg/day administered together with statin significantly improved serum total cholesterol (TC), triglyceride (TG), high-dense lipoprotein-cholesterol (HDL-C), and LDL-C after four-week treatment. Results: TC, TG, HDL-C and LDL-C levels were improved by, respectively, 33%, 20%, 10%, and 54%. The mean LDL size significantly increased from 25.6 ± 0.4 nm to 26.4 ± 0.8 nm. The small dense LDL-cholesterol (sdLDL-C), large buoyant LDL-cholesterol (lbLDL-C), and mid-band lipoprotein-cholesterol were reduced, respectively. Therefore, the preliminary study on this paper can be the first step into a new insight on the world of lipid metabolism. Conclusion: Short-term administration of evolocumab addedons to statin therapy, significantly reduced small size LDL levels.

References

[1]  Mudd, J.O., Bortaug, B.A., Johnston, P.V., Kral, B.G., Rouf, R., Blumenthal, R.S. and Kwiterovich, P.O. (2007) Beyond Low-Density Lipoprotein Cholesterol Defining the Role of Low-Density Lipoprotein Heterogeneity in Coronary Artery Disease. American College of Cardiology, 50, 1735-1741. https://doi.org/10.1016/j.jacc.2007.07.045
[2]  Inoue, I. and Katayama, S. (2004) The Possible Therapeutic Actions of Peroxisome Proliferator-Activated Receptor Alpha (PPAR Alpha) Agonists, PPAR Gamma Ago-nists, 3-Hydroxy-3-Methylglutaryl Coenzyme A (HMG-CoA) Reductase Inhibitors, Angiotensin Converting Enzyme (ACE) Inhibitors and Calcium (Ca)-Antagonists on Vascular Endothelial Cells. Current Drug Targets—Cardiovascular & Hematological Disorders, 4, 35-52.
https://doi.org/10.2174/1568006043481329
[3]  Krähenbühl, S., Pavik-Mezzour, I. and von Eckardstein, A. (2016) Unmet Needs in LDL-C Lowering: When Statins Won’t Do! Drugs, 76, 1175-1190.
https://doi.org/10.1007/s40265-016-0613-0
[4]  Havel, R.J. (2000) Remnant Lipoproteins as Therapeutic Targets. Current Opinion in Lipidology, 11, 615-620. https://doi.org/10.1097/00041433-200012000-00008
[5]  Chapman, M.J., Guerin, M. and Bruckert, E. (1998) Atherogenic, Dense Low-Density Lipoproteins. Pathophysiology and New Therapeutic Approaches. European Heart Journal, 19, A24-A30.
[6]  Nichols, A.V., Krauss, R.M. and Musliner, T.A. (1986) Nondenaturing Polyacryl-amide Gradient Gel Electrophoresis. Methods in Enzymology, 128, 417-431.
https://doi.org/10.1016/0076-6879(86)28084-2
[7]  Austin, M.A., Breslosv, J.L., Hennekens, C.H., Buring, J.E., Willett, W.C. and Krauss, R.M. (1988) Low-Density Lipoprotein Subclass Patterns and Risk of Myocardial Infarction. JAMA, 260, 1917-1921. https://doi.org/10.1001/jama.1988.03410130125037
[8]  Nozue, T., Michishita, I., Ito, Y. and Hirano, T. (2008) Effects of Statin on Small Dense Low Density-Lipoprotein Cholesterol and Remnant-Like Particle Cholesterol in Heterozygous Hypercholesterolemia. Journal of Atherosclerosis and Thrombosis, 15, 146-153.
https://doi.org/10.5551/jat.E552
[9]  Inoue, I., Awata, T. and Katayama, S. (2010) Retrospective, Observation Study: Quantitative and Qualitative Effect of Ezetimibe and HMG-CoA Reductase Inhibitors on LDL-Cholesterol: Are There Disappearance Thresholds for Small, Dense LDL and IDL? Recent Patents on Cardiovascular Drug Discovery, 5, 143-152. https://doi.org/10.2174/157489010791515386
[10]  Lambert, G., Sjouke, B., Choque, B., Kastelein, J.J. and Hovingh, G.K. (2012) The PCSK9 Decade. Journal of Lipid Research, 53, 2515-2524. https://doi.org/10.1194/jlr.R026658
[11]  Nakano, T., Inoue, I., Seo, M., Takahashi, S., Awata, T., Komoda, T. and Katayama, S. (2009) Rapid and Simple Profiling of Lipoproteins by Polyacrylamide-Gel Disc Electrophoresis to Determine the Heterogeneity of Low-Density Lipoproteins (LDLs) Including Small, Dense LDL. Recent Patents on Cardiovascular Drug Discovery, 4, 31-36.
https://doi.org/10.2174/157489009787260034
[12]  O’Neal, D., Harrip, P., Dragicevic, G., Rae, D. and Best, J.D. (1998) A Comparison of LDL Size Determination Using Gradient Gel Electrophoresis and Light-Scat-tering Methods. Journal of Lipid Research, 9, 2086-2090. http://www.jlr.org/content/39/10/2086.long
[13]  Hirayama, S. and Miida, T. (2012) Small Dense LDL: An Emerging Risk Factor for Cardiovascular Disease. Clinica Chimica Acta, 414, 215-224. https://doi.org/10.1016/j.cca.2012.09.010
[14]  Ensign, W., Hill, N. and Heward, C.B. (2006) Disparate LDL Phenotypic Classification among 4 Different Methods Assessing LDL Particle Characteristics. Clinical Chemistry, 52, L722-L727.
https://doi.org/10.1373/clinchem.2005.059949
[15]  Ikeda, T., Seo, M., Inoue, I., Katayama, S., Matsunaga, T., Hara, A., Komoda, T. and Tabuchi, M. (2010) Direct and Simple Fluorescence Detection Method for Oxidized Lipoproteins. Analytical Chemistry, 82, 1128-1132. https://doi.org/10.1021/ac902018a
[16]  Stein, E.A. (2006) Are Measurements of LDL Particles Ready for Prime Time? Clinical Chemistry, 52, 1643-1644. https://doi.org/10.1373/clinchem.2006.073452
[17]  Muñiz, N. (1977) Measurement of Plasma Lipoproteins by Electrophoresis on Polyacrylamide Gel. Clinical Chemistry, 23, 1826-1833.
[18]  Roche, D., Atger, V., Le Quang, N.T., Girard, A. and Ekindjian, O.G. (1985) Polyacrylamide Gel Electrophoresis in Quantification of High-Density Lipoprotein Cholesterol. Clinical Chemistry, 31, 1893-1895.
[19]  Bañuls, C., Bellod, L., Jover, A., Martínez-Triguero, M.L., Víctor, V.M., Rocha, M. and Hernández-Mijares, A. (2012) Comparability of Two Different Polyacrylamide Gel Electrophoresis Methods for the Classification of LDL Pattern Type. Clinica Chimica Acta, 413, 251-257.
https://doi.org/10.1016/j.cca.2011.09.047
[20]  Mishima, Y., Ando, M., Kuyama, F., Ishioku, T. and Kihata, M. (1997) A Simple Method for Identifying Particle Size of Low-Density Lipoprotein Using PAG Electrophoresis: Comparison between LipoPhor and Lipoprint LDL Systems. Journal of Japan Atherosclerosis Society, 25, 67-70. (In Japanease) https://www.jstage.jst.go.jp/article/jat1973/25/1-2/25_1-2_67/_pdf
[21]  Yoshida, A., Kodama, M., Nomura, H. and Naito, M. (2003) Classification of Lipoprotein Profile by Polyacrylamide Gel Disc Electrophoresis. Internal Medicine, 42, 244-249.
https://doi.org/10.2169/internalmedicine.42.244
[22]  Agouridis, A.P., Kostapanos, M.S., Tsimihodimos, V., Kostara, C., Mikhailidis, D.P., Bairaktari, E.T., Tselepis, A.D. and Elisaf, M.S. (2012) Effect of Rosuvastatin Monotherapy or in Combination with Fenofibrate or ω-3 Fatty Acids on Lipoprotein Subfraction Profile in Patients with Mixed Dyslipidaemia and Metabolic Syndrome. International Journal of Clinical Practice, 66, 843-853. https://doi.org/10.1111/j.1742-1241.2012.02972.x
[23]  Bando, Y., Toyama, H., Kanehara, H., Hisada, A., Okafuji, K., Toya, D. and Tanaka, N. (2016) Switching from Atorvastatin to Rosuvastatin Lowers Small, Dense Low-Density Lipoprotein Cholesterol Levels in Japanese Hypercholesterolemic Patients with Type 2 Diabetes Mellitus. Diabetes Research and Clinical Practice, 111, 66-73.
https://doi.org/10.1016/j.diabres.2015.10.013
[24]  Griffin, B.A. and Packard, C.J. (1994) Metabolism of VLDL and LDL Subclasses. Current Opinion in Lipidology, 5, 200-206. https://doi.org/10.1097/00041433-199405030-00007
[25]  Griffin, B.A. (1997) Low-Density Lipoprotein Subclasses: Mechanisms of Formation and Modulation. Proceedings of the Nutrition Society, 56, 693-702.
https://doi.org/10.1079/PNS19970069
[26]  Yoshino, G., Nakano, S., Matsumoto, T., Murakami, E., Morita, T. and Kuboki, K. (2012) Rosuvastatin Reduces Plasma Small Dense LDL-Cholesterol Predominantly in Non-Diabetic Hypercholesterolemic Patients. Pharmacology & Pharmacy, 3, 72-78.
https://doi.org/10.4236/pp.2012.31011
[27]  Roubtsova, A., Munkonda, M.N., Awan, Z., Marcinkiewicz, J., Chamberland, A., Lazure, C., Cianflone, K., Seidah, N.G. and Prat, A. (2011) Circulating Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Regulates VLDLR Protein and Triglyceride Accumulation in Visceral Adipose Tissue. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 785-791.
https://doi.org/10.1161/ATVBAHA.110.220988
[28]  Tavori, H., Rashid, S. and Fazio, S. (2015) On the Function and Homeostasis of PCSK9: Reciprocal Interaction with LDLR and Additional Lipid Effects. Atherosclerosis, 238, 264-270. https://doi.org/10.1016/j.atherosclerosis.2014.12.017
[29]  Yoshino, G., Hirano, T. and Kazumi, T. (2002) Treatment of Small Dense LDL. Journal of Atherosclerosis and Thrombosis, 9, 266-275. https://doi.org/10.5551/jat.9.266
[30]  Hirano, T., Ito, Y. and Yoshino, G. (2005) Measurement of Small Dense Low-Density Lipoprotein Particles. Journal of Atherosclerosis and Thrombosis, 12, 67-72.
https://doi.org/10.5551/jat.12.67
[31]  Ikeda, H. (1991) A Case of Symptomatic Hypobetalipoproteinemia with Unusual Distribution of Apoprotein E. Japanese Journal of Geriatrics, 28, 823-828. (In Japanese)
https://doi.org/10.3143/geriatrics.28.823
[32]  Mead, M.G. and Dangerfield, W.G. (1974) The Investigation of “Mid-Band” Lipoproteins Using Polyacrylamide Gel Electrophoresis. Clinica Chimica Acta, 51, 173-182.
https://doi.org/10.1016/0009-8981(74)90027-8
[33]  Nakada, F., Nakada, K. and Maehira, F. (1976) Purification of Human Serum Albumin and Gamma-Globulin by Using a Pellico-Electrofractionator. The Physico-Chemical Biology, 20, 119-123. (In Japanese) https://www.jstage.jst.go.jp/articIe/sbk1951/20/2/20_2_195/_pdf
[34]  Totsuka, M., Miyashita, Y., Itoh, Y., Hashiguchi, S., Urano, Y., Watanabe, J., Tomioka, H. and Shirai, K. (1997) Properties of Fast Beta Lipoprotein on the PAG Disc Electrophoresis and Its Role in Diabetic Complications. Journal of the Japan Diabetes Society, 40, 503-511. (In Japanese) https://www.jstage.jst.go.jp/article/tonyobyo1958/40/8/40_8_503/_pdf
[35]  Miyauchi, K., Kayahara, N., Ishigami, M., Kuwata, H., Mori, H., Sugiuchi, H., Irie, T., Tanaka, A., Yamashita, S. and Yamamura, T. (2007) Development of a Homogeneous Assay to Measure Remnant Lipoprotein Cholesterol. Clinical Chemistry, 53, 2138-2135.
https://doi.org/10.1373/clinchem.2007.092296
[36]  Yamashita, S., Ishigami, M. (2008) Efficacy of Remnant/TG Ratio, Remnant/non HDL-C Ratio Measurement Using MetaboLead Rem-C. Journal of Medicine and Pharmaceutical Sciences, 59, 429-437.
[37]  Stein, E.A. and Raal, F. (2016) Future Directions to Establish Lipoprotein(a) as a Treatment for Atherosclerotic Cardiovascular Disease. Cardiovascular Drugs and Therapy, 30, 101-108.
https://doi.org/10.1007/s10557-016-6654-5
[38]  Blom, D.J., Hala, T., Bolognese, M., Lillestol, M.J., Toth, P.D., Burgess, L., Ceska, R., Roth, E., Koren, M.J., Ballantyne, C.M., Monsalvo, M.L., Tsirtsonis, K., Kim, J.B., Scott, R., Wasserman, S.M. and Stein, E.A. (2014) A 52-Week Placebo-Controlled Trial of Evolocumab in Hyperlipidemia. New England Journal of Medicine, 370, 1809-1819.
https://doi.org/10.1056/NEJMoa1316222
[39]  Raal, F.J., Stein, E.A., Dufour, R., Turner, T., Civeira, F., Burgess, L., Langslet, G., Scott, R., Olsson, A.G., Sullivan, D., Hovingh, G.K., Cariou, B., Gouni-Berthold, I., Somaratne, R., Bridges, I., Scott, R., Wasserman, S.M. and Gaudet, D. (2015) PCSK9 Inhibition with Evolocumab (AMG 145) in Heterozygous Familial Hypercholesterolaemia (RUTHERFORD-2): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet, 385, 331-340.
https://doi.org/10.1016/S0140-6736(14)61399-4
[40]  Evans, R.M., Hui, S., Perkins, A., Lahiri, D.K., Poirier, J. and Farlow, M.R. (2004) Cholesterol and APOE Genotype Interact to Influence Alzheimer Disease Progression. Neurology, 62, 1869-1871.
https://doi.org/10.1212/01.WNL.0000125323.15458.3F
[41]  Corder, E.H., Saunders, A.M., Risch, N.J., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Rimmler, J.B., Locke, P.A., Conneally, P.M., Schmader, K.E., Small, G.W., Roses, A.D., Haines, J.L. and Pericak-Vance, M.A. (1994) Protective Effect of Apolipoprotein E Type 2 Allele for Late Onset Alzheimer Disease. Nature Genetics, 7, 180-184. https://doi.org/10.1038/ng0694-180

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413