Three new materials, nanobioMOFs (cobalt argeninate, cobalt asparaginate and cobalt glutaminate) have been hydrothermally synthesized. Nano sized morphology of all these materials have been obtained by scanning electron microscopic technique. Mass spectrometric studies of all these materials have been conducted for determination of their molar masses. All these nanobioMOFs have been found to exhibit photocatalytic hydrogen generation in pure water upon irradiation at wavelengths longer than 650 nm. The amounts of quantum yield of hydrogen generation at 650 nm in water was 4.5%, 4.0% and 3.5% for cobalt argeninate, cobalt asparaginate and cobalt glutaminate respectively. The apparently higher yield of hydrogen generation from these amine functionalized nanobioMOFs can direct to the development of more nano sized functionalized MOFs for water splitting.
References
[1]
Yadav, R.K., Baeg, J.O., Oh, G.H., Park, N.J., Kong, K.J., Kim, J., Hwang, D.W. and Biswas, S.K. (2012) A Photocatalyst-Enzyme Coupled Artificial Photosynthesis System for Solar Energy in Production of Formic Acid from CO2. Journal of the American Chemical Society, 134, 11455-11461.
https://www.ncbi.nlm.nih.gov/pubmed/22769600
https://doi.org/10.1021/ja3009902
[2]
Berardi, S., Drouet, S., Francas, L., Gimbert-Surinach, C., Guttentag, M., Richmond, C., Stoll, T. and Llobet, A. (2014) Molecular Artificial Photosynthesis. Chemical Society Reviews, 43, 7501-7519. https://www.ncbi.nlm.nih.gov/pubmed/24473472
https://doi.org/10.1039/c3cs60405e
[3]
Cokoja, M., Bruckmeier, C., Rieger, B., Herrmann, W.A., Kühn, F.E., Bruckmeier, C., Rieger, B., Herrmann, W.A. and Kühn, F.E. (2011) Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge? Angewandte Chemie International Edition, 50, 8510-8537.
https://www.ncbi.nlm.nih.gov/pubmed/21887758
https://doi.org/10.1002/anie.201102010
Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X. and Li, Z. (2012) An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51, 3364-3367. https://www.ncbi.nlm.nih.gov/pubmed/22359408
https://doi.org/10.1002/anie.201108357
[6]
Guo, S., Bao, J., Hu, T., Zhang, L., Yang, L., Peng, J. and Jiang, C. (2015) Controllable Synthesis Porous Ag2CO3 Nanorods for Efficient Photocatalysis. Nanoscale Research Letters, 21, 193. https://www.ncbi.nlm.nih.gov/pubmed/25977664
https://doi.org/10.1186/s11671-015-0892-5
[7]
Jiang, Z., Tang, Y., Tay, Q., Zhang, Y., Malyi, O.I., Wang, D., Deng, J., Lai, Y., Zhou, H., Chen, X. , Dong, Z. and Chen, Z. (2013) Understanding the Role of Nanostructures for Efficient Hydrogen Generation on Immobilized Photocatalysts. Advanced Energy Materials, 3, 1368-1380.
http://onlinelibrary.wiley.com/doi/10.1002/aenm.201300380/ful
https://doi.org/10.1002/aenm.201300380
[8]
Lang, X., Chen, X. and Zhao, J. (2014) Heterogeneous Visible Light Photocatalysis for Selective Organic Transformations. Chemical Society Reviews, 43, 473-486.
https://www.ncbi.nlm.nih.gov/pubmed/24162830
https://doi.org/10.1039/C3CS60188A
[9]
Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. and Lillerud, K.P. (2008) A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130, 13850-13851. https://www.ncbi.nlm.nih.gov/pubmed/18817383
https://doi.org/10.1021/ja8057953
[10]
Silva, C.G., Luz, I., LlabrésiXamena, F.X., Corma, A. and García, H. (2010) Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry: A European Journal, 16, 11133-11138.
http://onlinelibrary.wiley.com/doi/10.1002/chem.200903526/ful
[11]
Lin, R., Shen, L., Ren, Z., Wu, W., Tan, Y., Fu, H., Zhang, J. and Wu, L. (2014) Enhanced Photocatalytic Hydrogen Production Activity via Dual Modification of MOF and Reduced Graphene Oxide on CdS. Chemical Communications, 50, 8533-8535.
http://pubs.rsc.org/En/content/articlelanding/2014/cc/c4cc01776e#!divAbstract
https://doi.org/10.1039/C4CC01776E
[12]
Horiuchi, Y., Toyao, T., Saito, M., Mochizuki, K., Iwata, M., Higashimura, H., Anpo M. and Matsuoka M. (2012) Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal-Organic Framework. The Journal of Physical Chemistry C, 116, 20848-20853.
http://pubs.acs.org/doi/abs/10.1021/jp3046005
https://doi.org/10.1021/jp3046005
[13]
He, J., Wang, J., Chen, Y., Zhang, J., Duan, D., Wang, Y. and Yan, Z. (2014) A Dye-Sensitized Pt UiO-66(Zr) Metal-Organic Framework for Visible-Light Photocatalytic Hydrogen Production. Chemical Communications, 50, 7063.
http://pubs.rsc.org/EN/content/articlelanding/2014/cc/c4cc01086h#!divAbstract
https://doi.org/10.1039/c4cc01086h
[14]
Toyao, T., Saito, M., Horiuchi, Y., Mochizuki, K., Iwata, M., Higashimura, H. and Matsuoka, M. (2013) Efficient Hydrogen Production and Photocatalytic Reduction of Nitrobenzene over a Visible-Light-Responsive Metal-Organic Framework Photocatalyst. Catalysis Science & Technology, 3, 2092-2097.
http://pubs.rsc.org/en/content/articlelanding/2013/cy/c3cy00211j#!divAbstract
https://doi.org/10.1039/c3cy00211j
[15]
Wen, M., Mori, K., Kamegawa, T. and Yamashita, H. (2014) Amine-Functionalized MIL-101(Cr) with Imbedded Platinum Nanoparticles as a Durable Photocatalyst for Hydrogen Production from Water. Chemical Communications, 50, 11645-11648.
http://pubs.rsc.org/En/content/articlelanding/2014/cc/c4cc02994a#!divAbstract
https://doi.org/10.1039/C4CC02994A
[16]
Toyao, T., Saito, M., Dohshi, S., Mochizuki, K., Iwata, M., Higashimura, H., Horiuchi, Y. and Matsuoka, M. (2014) Development of a Ru Complex-Incorporated MOF Photocatalyst for Hydrogen Production under Visible-Light Irradiation. Chemical Communications, 50, 6779-6781. https://www.ncbi.nlm.nih.gov/pubmed/24836941
https://doi.org/10.1039/c4cc02397h
[17]
Fateeva, A., Chater, P.A., Ireland, C.P., Tahir, A.A., Khimyak, Y.Z., Wiper, P.V., Darwent, J.R. and Rosseinsky, M.J. (2012) A Water-Stable Porphyrin-Based Metal-Organic Framework Active for Visible-Light Photocatalysis. Angewandte Chemie International Edition, 51, 7440-7444.
https://www.ncbi.nlm.nih.gov/pubmed/22696508
https://doi.org/10.1002/anie.201202471
[18]
Wang, G., Sun, Q., Liu, Y., Huang, B., Dai, Y., Zhang, X. and Qin, X. (2015) A Bismuth-Based Metal-Organic Framework as an Efficient Visible-Light-Driven Photocatalyst. Chemistry: A European Journal, 21, 2364.
http://onlinelibrary.wiley.com/doi/10.1002/chem.201405047/abstract
https://doi.org/10.1002/chem.201405047
[19]
Wang, C., Xie, Z. deKrafft, K.E. and Lin, W. (2011) Doping Metal-Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 133, 13445-13454.
https://www.ncbi.nlm.nih.gov/pubmed/21780787
https://doi.org/10.1021/ja203564w
[20]
Wang, C., Wang, J.L. and Lin, W. (2012) Elucidating Molecular Iridium Water Oxidation Catalysts Using Metal-Organic Frameworks: A Comprehensive Structural, Catalytic, Spectroscopic, and Kinetic Study. Journal of the American Chemical Society, 134, 19895-19908. https://www.ncbi.nlm.nih.gov/pubmed/23136923
https://doi.org/10.1021/ja310074j
[21]
Wang, M., Han, J., Xiong, H., Rong, G. and Yadong, Y. (2015) Nanostructured Hybrid Shells of r-GO/AuNP/m-TiO2 as Highly Active Photocatalysts. ACS Applied Materials & Interfaces, 7, 6909-6918.
http://pubs.acs.org/doi/abs/10.1021/acsami.5b00663?src=recsys
https://doi.org/10.1021/acsami.5b00663
[22]
Nasalevich, M.A., Becker, R., Ramos-Fernandez, E.V., Castellanos, S., Veber, S.L., Fedin, M.V., Kapteijn, F., Reek, J.N.H., van der Vlugt, J.I. and Gascon, J. (2015) Co NH2-MIL-125(Ti): Cobaloxime-Derived Metal-Organic Framework-Based Composite for Light-Driven H2 Production. Energy & Environmental Science, 8, 364-375.
http://pubs.rsc.org/en/content/articlelanding/2015/ee/c4ee02853h#!divAbstract
https://doi.org/10.1039/C4EE02853H
[23]
Meyer, K., Bashir, S., Llorca, J., Idriss, H., Ranocchiari, M. and Bokhoven, J.A. (2016) Photocatalyzed Hydrogen Evolution from Water by a Composite Catalyst of NH2-MIL-125(Ti) and Surface Nickel(II) Species. Chemistry—A European Journal, 22, 13894-13899.
http://onlinelibrary.wiley.com/doi/10.1002/chem.201601988/abstract
https://doi.org/10.1002/chem.201601988
Shen, L., Liang, S., Wu, W., Lianga, R. and Wu, L. (2013) CdS-Decorated UiO-66(NH2) Nanocomposites Fabricated by a Facile Photodeposition Process: An Efficient and Stable Visible-Light-Driven Photocatalyst for Selective Oxidation of Alcohols. Journal of Materials Chemistry, 1, 11473-11482.
http://pubs.rsc.org/en/content/articlelanding/2013/ta/c3ta12645e#!divAbstract
https://doi.org/10.1039/c3ta12645e
[26]
Ke, F., Wang, L. and Zhu, J. (2015) Facile Fabrication of CdS-Metal-Organic Framework Nanocomposites with Enhanced Visible-Light Photocatalytic Activity for Organic Transformation. Nano Research, 8, 1834-1846.
http://link.springer.com/article/10.1007/s12274-014-0690-x
https://doi.org/10.1007/s12274-014-0690-x
[27]
Abedi, S. and Morsali, A. (2014) Ordered Mesoporous Metal-Organic Frameworks Incorporated with Amorphous TiO2 as Photocatalyst for Selective Aerobic Oxidation in Sunlight Irradiation. ACS Catalysis, 4, 1398-1403.
https://doi.org/10.1021/cs500123d