全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Tat Protein Enhances CTL Responses and Therapeutic Immunity of Gag-Specific Exosome-Targeted T Cell-Based Gag/Tat-Texo Vaccine in Transgenic HLA-A2 Mice

DOI: 10.4236/wjv.2017.72002, PP. 11-25

Keywords: Tat, T-Cell Vaccine, Gag, Exosome, CTL, Therapeutic Immunity, Transgenic HLA-A2 Mice

Full-Text   Cite this paper   Add to My Lib

Abstract:

Human immunodeficiency virus type-1 (HIV-1) chronic infection causes millions of deaths each year. We previously developed a novel HIV-1 Gag-spe cific exosome (EXO)-targeted T cell-based vaccine (Gag-Texo) using ConAstimulated polyclonal CD8+T (ConA-T) cells armed with Gag-specific dendritic cell (DC)-released EXOs, and showed that Gag-Texo stimulated more efficient cytotoxic T lymphocyte (CTL) responses than DCs. Tat HIV-1 early regulatory protein possesses immunomodulatory and adjuvant properties. To enhance Gag-Texo immunogenicity, we generated Tat-engineered OVA/Tat Texo and Gag/Tat-Texo vaccines using ConA-T cells armed with EXOs release by DCs infected with recombinant OVA/Tat- and Gag/Tat-expressing adenoviruses (AdVOVA/Tat and AdVGag/Tat). We then assessed vaccination-stimulated CTL responses in naive mice, and therapeutic immunity in transgenic HLA-A2 mice bearing Gag/HLA-A2-expressing BL6-10OVA/A2 melanoma lung metastases. We demonstrate that the OVA/Tat-Texo vaccine enhances functional OVA-specific CTL responses, compared to the OVA-Texo vaccine, and broadens CTL responses recognizing the cryptic OVA epitope in C57BL/6 mice. Furthermore, we determine that the Gag/Tat-Texo not only stimulates more efficient CTL responses than Gag-Texo, but also induces enhanced therapeutic immunity. We show that, 30% of Gag/Tat-Texo-immunized mice are free of tumor lung-metastases, compared to all Gag-Texo-immunized mice displaying lung-metastasis. In addition, the average number of tumor lung metastases colonies (32/lung) in the Gag/Tat-Texo-immunized mice was also significantly lower than that (78/lung) observed in Gag-Texo-immunized mice. Taken together, this indicates that HIV-1 Gag/Tat-Texo capable of stimulating enhanced Gag-specific CTL responses and therapeutic immunity may become a new immunotherapeutic vaccine candidate for controlling virus in HIV-1 patients.

References

[1]  Finzi, D., Blankson, J., Siliciano, J.D., et al. (1999) Latent Infection of CD4+ T Cells Provides a Mechanism for Lifelong Persistence of HIV-1, Even in Patients on Effective Combination Therapy. Nature Medicine, 5, 512-517.
https://doi.org/10.1038/8394
[2]  Miura, T., Brockman, M.A., Schneidewind, A., et al. (2009) HLA-B57/B*5801 Human Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphocyte Recognition. Journal of Virology, 83, 2743-2755.
https://doi.org/10.1128/JVI.02265-08
[3]  Barouch, D.H. and Deeks, S.G. (2014) Immunologic Strategies for HIV-1 Remission and Eradication. Science, 345, 169-174.
https://doi.org/10.1126/science.1255512
[4]  Shan, L., Deng, K., Shroff, N.S., et al. (2012) Stimulation of HIV-1-Specific Cytolytic T Lymphocytes Facilitates Elimination of Latent Viral Reservoir after Virus Reactivation. Immunity, 36, 491-501.
https://doi.org/10.1016/j.immuni.2012.01.014
[5]  Deng, K., Pertea, M., Rongvaux, A., et al. (2015) Broad CTL Response Is Required to Clear Latent HIV-1 Due to Dominance of Escape Mutations. Nature, 517, 381-385.
https://doi.org/10.1038/nature14053
[6]  Mcmichael, A.J. (2006) HIV Vaccines. Annual Review of Immunology, 24, 227-255.
https://doi.org/10.1146/annurev.immunol.24.021605.090605
[7]  Titti, F., Cafaro, A., Ferrantelli, F., et al. (2007) Problems and Emerging Approaches in HIV/AIDS Vaccine Development. Expert Opinion on Emerging Drugs, 12, 23-48.
https://doi.org/10.1517/14728214.12.1.23
[8]  Fischbach, M.A., Bluestone, J.A. and Lim, W.A. (2013) Cell-Based Therapeutics: The Next Pillar of Medicine. Science Translational Medicine, 5, 177-179.
https://doi.org/10.1126/scitranslmed.3005568
[9]  Lu, W., Arraes, L.C., Ferreira, W.T. and Andrieu, J.M. (2004) Therapeutic Dendritic-Cell Vaccine for Chronic HIV-1 Infection. Nature Medicine, 10, 1359-1365.
https://doi.org/10.1038/nm1147
[10]  Garcia, F., Plana, M., Climent, N., Leon, A., Gatell, J.M. and Gallart, T. (2013) Dendritic Cell Based Vaccines for HIV Infection: The Way Ahead. Human Vaccines & Immunotherapeutics, 9, 2445-2452.
https://doi.org/10.4161/hv.25876
[11]  Barber, D.L., Wherry, E.J., Masopust, D., et al. (2006) Restoring Function in Exhausted CD8 T Cells during Chronic Viral Infection. Nature, 439, 682-687.
https://doi.org/10.1038/nature04444
[12]  Velu, V., Shetty, R.D., Larsson, M. and Shankar, E.M. (2015) Role of PD-1 Co-Inhibitory Pathway in HIV Infection and Potential Therapeutic Options. Retrovirology, 12, 14.
https://doi.org/10.1186/s12977-015-0144-x
[13]  Nanjundappa, R.H., Wang, R., Xie, Y., et al. (2011) GP120-Specific Exosome-Targeted T Cell-Based Vaccine Capable of Stimulating DC- and CD4+ T-Independent CTL Responses. Vaccine, 29, 3538-3547.
https://doi.org/10.1016/j.vaccine.2011.02.095
[14]  Nanjundappa, R.H., Wang, R., Xie, Y., Umeshappa, C.S. and Xiang, J. (2012) Novel CD8+ T Cell-Based Vaccine Stimulates Gp120-Specific CTL Responses Leading to Therapeutic and Long-Term Immunity in Transgenic HLA-A2 Mice. Vaccine, 30, 3519-3525.
https://doi.org/10.1016/j.vaccine.2012.03.075
[15]  Niu, L., Termini, J.M., Kanagavelu, S.K., et al. (2011) Preclinical Evaluation of HIV-1 Therapeutic ex Vivo Dendritic Cell Vaccines Expressing Consensus Gag Antigens and Conserved Gag Epitopes. Vaccine, 29, 2110-2119.
https://doi.org/10.1016/j.vaccine.2010.12.131
[16]  Li, W., Li, S., Hu, Y., Tang, B., Cui, L. and He, W. (2008) Efficient Augmentation of a Long-Lasting Immune Responses in HIV-1 Gag DNA Vaccination by IL-15 Plasmid Boosting. Vaccine, 26, 3282-3290.
https://doi.org/10.1016/j.vaccine.2008.03.081
[17]  Liu, Y., Li, F., Hong, K., et al. (2011) HIV Fragment Gag Vaccine Induces Broader T Cell Response in Mice. Vaccine, 29, 2582-2589.
https://doi.org/10.1016/j.vaccine.2011.01.049
[18]  Zuniga, R., Lucchetti, A., Galvan, P., et al. (2006) Relative Dominance of Gag p24-Specific Cytotoxic T Lymphocytes Is Associated with Human Immunodeficiency Virus Control. Journal of Virology, 80, 3122-3125.
https://doi.org/10.1128/JVI.80.6.3122-3125.2006
[19]  Kiepiela, P., Ngumbela, K., Thobakgale, C., et al. (2007) CD8+ T-Cell Responses to Different HIV Proteins Have Discordant Associations with Viral Load. Nature Medicine, 13, 46-53.
https://doi.org/10.1038/nm1520
[20]  Rolland, M., Heckerman, D., Deng, W., et al. (2008) Broad and Gag-Biased HIV-1 Epitope Repertoires Are Associated with Lower Viral Loads. PLoS ONE, 3, e1424.
https://doi.org/10.1371/journal.pone.0001424
[21]  Julg, B., Williams, K.L., Reddy, S., et al. (2010) Enhanced Anti-HIV Functional Activity Associated with Gag-Specific CD8 T-Cell Responses. Journal of Virology, 84, 5540-5549.
https://doi.org/10.1128/JVI.02031-09
[22]  Wang, R., Xie, Y., Zhao, T., Tan, X., Xu, J. and Xiang, J. (2014) HIV-1 Gag-Specific Exosome-Targeted T Cell-Based Vaccine Stimulates Effector CTL Responses Leading to Therapeutic and Long-Term Immunity against Gag/HLA-A2-Expressing B16 Melanoma in Transgenic HLA-A2 Mice. Trials in Vaccinology, 3, 19-25.
[23]  Caputo, A., Gavioli, R., Bellino, S., et al. (2009) HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development. International Reviews of Immunology, 28, 285-334.
https://doi.org/10.1080/08830180903013026
[24]  Kedl, R.M., Rees, W.A., Hildeman, D.A., et al. (2000) T Cells Compete for Access to Antigen-Bearing Antigen-Presenting Cells. The Journal of Experimental Medicine, 192, 1105-1114.
https://doi.org/10.1084/jem.192.8.1105
[25]  Zhu, Y., Tao, M., Wu, J., et al. (2016) Adenovirus-Directed Expression of TIPE2 Suppresses Gastric Cancer Growth via Induction of Apoptosis and Inhibition of AKT and ERK1/2 Signaling. Cancer Gene Therapy, 23, 98-106.
https://doi.org/10.1038/cgt.2016.6
[26]  Sas, S., Chan, T., Sami, A., El-Gayed, A. and Xiang, J. (2008) Vaccination of Fiber-Modified Adenovirus-Transfected Dendritic Cells to Express HER-2/neu Stimulates Efficient HER-2/neu-Specific Humoral and CTL Responses and Reduces Breast Carcinogenesis in Transgenic Mice. Cancer Gene Therapy, 15, 655-666.
https://doi.org/10.1038/cgt.2008.18
[27]  Xie, Y., Zhang, X., Zhao, T., Li, W. and Xiang, J. (2013) Natural CD8+ 25+ Regulatory T Cell-Secreted Exosomes Capable of Suppressing Cytotoxic T Lymphocyte-Mediated Immunity Against B16 Melanoma. Biochemical and Biophysical Research Communications, 438, 152-155.
[28]  Liu, Y., Mcnevin, J., Rolland, M., et al. (2009) Conserved HIV-1 Epitopes Continuously Elicit Subdominant Cytotoxic T-Lymphocyte Responses. Journal of Infectious Diseases, 200, 1825-1833.
https://doi.org/10.1086/648401
[29]  Mudd, P.A., Martins, M.A., Ericsen, A.J., et al. (2012) Vaccine-Induced CD8+ T Cells Control AIDS Virus Replication. Nature, 491, 129-133.
https://doi.org/10.1038/nature11443
[30]  De Rosa, S.D. and Mcelrath, M.J. (2008) T Cell Responses Generated by HIV Vaccines in Clinical trials. Current Opinion in HIV and AIDS, 3, 375-379.
[31]  Palucka, K., Ueno, H. and Banchereau, J. (2011) Recent Developments in Cancer Vaccines. Journal of Immunology, 186, 1325-1331.
https://doi.org/10.4049/jimmunol.0902539
[32]  Van Gulck, E.R., Vanham, G., Heyndrickx, L., et al. (2008) Efficient in Vitro Expansion of Human Immunodeficiency Virus (HIV)-Specific T-Cell Responses by Gag mRNA-Electroporated Dendritic Cells from Treated and Untreated HIV Type 1-Infected Individuals. Journal of Virology, 82, 3561-3573.
https://doi.org/10.1128/JVI.02080-07
[33]  Villamide-Herrera, L., Ignatius, R., Eller, M., et al. (2004) Macaque Dendritic Cells Infected with SIV-Recombinant Canarypox ex Vivo induce SIV-Specific Immune Responses in Vivo. AIDS Research and Human Retroviruses, 20, 871-884.
https://doi.org/10.1089/0889222041725136
[34]  Ide, F., Nakamura, T., Tomizawa, M., et al. (2006) Peptide-Loaded Dendritic-Cell Vaccination Followed by Treatment Interruption for Chronic HIV-1 Infection: A Phase 1 Trial. Journal of Medical Virology, 78, 711-718.
https://doi.org/10.1002/jmv.20612
[35]  García, F. and Routy, J.-P. (2011) Challenges in Dendritic Cells-Based Therapeutic Vaccination in HIV-1 Infection: Workshop in Dendritic Cell-Based Vaccine Clinical Trials in HIV-1. Vaccine, 29, 6454-6463.
https://doi.org/10.1016/j.vaccine.2011.07.043
[36]  Gavioli, R., Gallerani, E., Fortini, C., et al. (2004) HIV-1 Tat Protein Modulates the Generation of Cytotoxic T Cell Epitopes by Modifying Proteasome Composition and Enzymatic Activity. The Journal of Immunology, 173, 3838-3843.
https://doi.org/10.4049/jimmunol.173.6.3838
[37]  Fanales-Belasio, E., Moretti, S., Nappi, F., et al. (2002) Native HIV-1 Tat Protein Targets Monocyte-Derived Dendritic Cells and Enhances Their Maturation, Function, and Antigen-Specific T Cell Responses. The Journal of Immunology, 168, 197-206.
https://doi.org/10.4049/jimmunol.168.1.197
[38]  Fanales-Belasio, E., Moretti, S., Fiorelli, V., et al. (2009) HIV-1 Tat Addresses Dendritic Cells to Induce a Predominant Th1-Type Adaptive Immune Response That Appears Prevalent in the Asymptomatic Stage of Infection. The Journal of Immunology, 182, 2888-2897.
https://doi.org/10.4049/jimmunol.0711406
[39]  Gavioli, R., Cellini, S., Castaldello, A., et al. (2008) The Tat Protein Broadens T Cell Responses Directed to the HIV-1 Antigens Gag and Env: Implications for the Design of New Vaccination Strategies against AIDS. Vaccine, 26, 727-737.
https://doi.org/10.1016/j.vaccine.2007.11.040
[40]  Borsutzky, S., Ebensen, T., Link, C., et al. (2006) Efficient Systemic and Mucosal Re-sponses against the HIV-1 Tat Protein by Prime/Boost Vaccination Using the Lipo-peptide MALP-2 as Adjuvant. Vaccine, 24, 2049-2056.
[41]  Leroux-Roels, I., Koutsoukos, M., Clement, F., et al. (2010) Strong and Persistent CD4+ T-Cell Response in Healthy Adults Immunized with a Candidate HIV-1 Vaccine Containing gp120, Nef and Tat Antigens Formulated in Three Adjuvant Systems. Vaccine, 28, 7016-7024.
https://doi.org/10.1016/j.vaccine.2010.08.035
[42]  Ferrantelli, F., Maggiorella, M.T., Schiavoni, I., et al. (2011) A combination HIV Vaccine Based on Tat and Env Proteins Was Immunogenic and Protected Macaques from Mucosal SHIV Challenge in a Pilot Study. Vaccine, 29, 2918-2932.
https://doi.org/10.1016/j.vaccine.2011.02.006
[43]  Wang, R., Xu, A., Zhang, X., et al. (2016) Novel Exosome-Targeted T-Cell-Based Vaccine Counteracts T-Cell Anergy and Converts CTL Exhaustion in Chronic Infection via CD40L Signaling through the mTORC1 Pathway. Cellular & Molecular Immunology, e-pub ahead of print 6 June 2016.
https://doi.org/10.1038/cmi.2016.23

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413