Optimizing the estimates of received power signals is important as it can improve the process of transferring an active call from one base station in a cellular network to another base station without any interruptions to the call. The lack of effective techniques for estimation of shadow power in fading mobile wireless communication channels motivated the use of Kalman Filtering (KF) as an effective alternative. In our research, linear second-order state space Kalman Filtering was further investigated and tested for applicability. We first created simulation models for two KF-based estimators designed to estimate local mean (shadow) power in mobile communications corrupted by multipath noise. Simulations were used extensively in the initial stage of this research to validate the proposed method. The next challenge was to determine if the models would work with real data. Therefore, in [1] we presented a new technique to experimentally characterize the wireless small-scale fading channel taking into consideration real environmental conditions. The two-dimensional measurement technique enabled us to perform indoor experiments and collect real data. Measurements from these experiments were then used to validate simulation models for both estimators. Based on the indoor experiments, we presented new results in [2], where we concluded that the second-order KF-based estimator is more accurate in predicting local shadow power profiles than the first-order KF-based estimator, even in channels with imposed non-Gaussian measurement noise. In the present paper, we extend experiments to the outdoor environment to include higher speeds, larger distances, and distant large objects, such as tall buildings. Comparison was performed to see if the system is able to operate without a failure under a variety of conditions, which demonstrates model robustness and further investigates the effectiveness of this method in optimization of the received signals. Outdoor experimental results are provided. Findings demonstrate that the second-order Kalman filter outperforms the first-order Kalman filter.
References
[1]
Mawari, R., Henderson, A., Akbar, M., Dargin, G. and Zohdy, M. (2016) ) An Improved Characterization of Small Scale Fading Based on 2D Measurements and Modeling of a Moving Receiver in an Indoor Environment. Journal of Signal and Information Processing, 7, 160-174. https://doi.org/10.4236/jsip.2016.73016
[2]
Kapetanovic, A., Mawari, R. and Zohdy, M. (2016) Second-Order Kalman Filtering Application to Fading Channels Supported by Real Data. Journal of Signal and Information Processing, 7, 61-74. https://doi.org/10.4236/jsip.2016.72008
[3]
Graf, Z. (1974) Dictionary of Electronics.
[4]
Yarhmatter, E. and Kapetanovic, A. (2012) Power Estimation in Mobile Communications: Comparison of the First Order AR Model to Second Order AR Model. Oakland University, Rochester, MI. (Unpublished)
[5]
Jiang, T., Sidiropoulos, N.D. and Giannakis, G.B. (2003) Kalman Filtering for Power Estimation in Mobile Communications, IEEE Transactions on Wireless Communications, 2,151-161. https://doi.org/10.1109/TWC.2002.806386
[6]
Kalman, R.E. (1960) A New Approach to Linear Filtering and Prediction Problems. Research Institute for Advanced Study, Baltimore.
[7]
Simon, D. (2006) Optimal State Estimation: Kalman, H∞ and Nonlinear Approaches. 1st Edition, John Wiley & Sons Inc., New Jersey.
https://doi.org/10.1002/0470045345
[8]
Nsour, A., Abdallah, A.-S. and Zohdy, M. (2013) An Investigation into Using Kalman Filtering for Phase Estimation in Bluetooth Receivers for Gaussian and Non-Gaussian Noise. 2013 IEEE International Conference on Electro/Information Technology, Rapid City, 9-11 May 2013, 1-5.
https://doi.org/10.1109/EIT.2013.6632644
[9]
Rappaport, T.S. (2010) Wireless Communications Principles and Practice. 2nd Edition, Persons Education, London.
[10]
Gudmundson, M. (1991) Correlation Model for Shadowing Fading in Mobile Radio Systems. Electronics Letters, 27, 2145-2146. https://doi.org/10.1049/el:19911328
[11]
Grewal, M.S. and Andrews, A.P. (2014) Kalman Filtering Theory and Practice Using MATLAB. 4th Edition, John Wiley & Sons Inc., New York.
[12]
Brown, R.G. and Hwang, P.Y.C. (2012) Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises. 4th Edition, John Wiley & Sons Inc., Hoboken.
[13]
Li, L. and Xia, Y. (2013) Unscented Kalman Filter over Unreliable Communication Networks with Markovian Packet Dropouts. IEEE Transactions of Automatic Control, 58, 3224-3230. https://doi.org/10.1109/TAC.2013.2263650