全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental, Mathematical and Finite Element Analysis (FEA) of Temperature Distribution through Rectangular Fin with Circular Perforations

DOI: 10.4236/mnsms.2017.72002, PP. 19-32

Keywords: Fin, Mathematical, Temperature, FEA and Perforations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fins are the extended surfaces through which heat transfer takes place to keep the surface cool. Fins of various configurations are presently used ranging from automobile engine cooling to cooling of computer parts. Note that in a fin majority of the heat transfer to atmosphere is by convection and therefore in the present research, and importance is given to variation of temperature along the length of the fin which in turn gives rate of heat transfer. In the present research a solid rectangular aluminum fin and the same rectangular fin with different perforations (2, 4, 8 and 10) were compared analytically, experimentally and its validity through finite element analysis for its temperature distribution along the length. From the present research it is observed that the mathematical and FEA for a solid rectangular fin without perforations are converging within ±1°C and rectangular fin with 10 perforations are converging within ±2°C and hence the validity.

References

[1]  Abdullah, H., Alessa, M.I. and Al-Widyan (2008) Enhancement of Natural Convection Heat Transfer from a Fin by Triangular Perforation of Bases Parallel and toward Its Tip. Applied Math or Mechanical Engineering, 29, 1033-1044.
https://doi.org/10.1007/s10483-008-0807-x
[2]  Baruah, M., Dewan, A. and Mahant, P. (2011) Performance of Elliptical Pin Heat Exchanger with Three Elliptical Perforations. Department of Mechanical Engineering, 3, 25-32.
[3]  Elshafei, E.A.M. (2010) Natural Convection Heat Transfer from a Heat Sink with Hollow/Perforated Circular Pin Fin. Thermal Issues in Emerging Technologies, Cairo, 19-22 December 2010, 185-193.
https://doi.org/10.1109/theta.2010.5766397
[4]  Khoshnevis, A., Zetalati, F. and Jalaal, M. (2009) Heat Transfer Enhancement of Slot & Hole Shape Perforation in Rectangular Ribs of a 3-D Channel. 17th Annual (International) Conference on Mechanical Engineering, Tehran, May 2009, 127-136.
[5]  Shaeri, M.R. and Yaghoubi, M. (2009) Numerical Analysis of Turbulent Convection Heat Transfer from an Array of Perforated Fins. International Journal of Heat and Fluid Flow, 30, 218-228.
https://doi.org/10.1016/j.ijheatfluidflow.2008.12.011
[6]  Karabacak, R. and Yakar, G. (2011) Forced Convection Heat Transfer and Pressure Drop for a Horizontal Cylinder with Vertically Attached Imperforate and Perforated Circular Fins. Energy Conversion and Management, 52, 2785-2793.
https://doi.org/10.1016/j.enconman.2011.02.017
[7]  Kavita, H., Dhanwade, V., Sunnapwar, K., Hanamant, S. and Dhanawade (2006) Theraml Analysis of Square and Circular Perforated Fin Arrays by Forced Convection. International Journal of Current Engineering, 26, 1990-1997.
[8]  Ganorkar, A.B. and Kriplani, V.M. (2012) Experimental Study of Heat Transfer Rate by Using Lateral Perforated Fins in a Rectangular Channel. MIT International Journal of Mechanical Engineering, 2, 91-96.
[9]  Sahin, B. and Demir, A. (2008) Performance Analysis of a Heat Exchanger Having Perforated Square Fins, Applied Thermal Engineering, 28, 621-632.
https://doi.org/10.1016/j.applthermaleng.2007.04.003
[10]  Karthikeyan, R. and Rathnasamy (2014) International Journal of Advanced Engineering Science and Technology. Elsevier, 10, 125-138.
[11]  Tzer-Ming, J., Sheng and Zeng, C. (2007) International Journal of Heat and Mass Transfer. Elsevier, 50, 2364-2375.
[12]  Babus, R.F., Haq, K. Akintunde, S.D. and Probert (1995) Thermal Performance of a Pin -Fin Assembly. International Journal of Heat and Fluid Flow, 16, 50-55.
https://doi.org/10.1016/0142-727X(94)00005-W
[13]  Amol, B., Dhumne, Hemant, S. and Farkade (2013) Heat Transfer Analysis of Cylindrical Perforated Fins in Staggered Arrangement. International Journal of Technology and Engineering Education, 2, 225-230.
[14]  Tanda, G. (2001) International Journal of Heat and Mass Transfer. Pergamon, 44, 3529-3541.
[15]  Vanfossen, G.J. and Brigham, B.A. (1984) Length to Diameter Ratio and Row Number Effects in Short Pin Fin Heat Transfer. Journal of Engineering for Gas Turbines and Power, 106, 241-244.
https://doi.org/10.1115/1.3239541
[16]  Metzger, D.E., Fan, C.S. and Haley, S.W. (1984) Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays. Journal of Engineering for Gas Turbines and Power, 106, 252–257.
https://doi.org/10.1115/1.3239545
[17]  Sara, O.N., Pekdemir, T., Yapici, S. and Yilmaz, M. (2016) Heat-Transfer Enhancement in a Channel Flow with Perforated Rectangular Blocks. International Journal of Heat and Fluid Flow, 22, 509-518.
https://doi.org/10.1016/S0142-727X(01)00117-5
[18]  Tomar, Y.S. and Sahu, M.M. (2013) Performance Analysis of Extended Surfaces (Fins) under Free and Forced Convection. Heat Transfer, 2, 13. www.ijird.com
[19]  Yang, K.-S. and Chu, W.-H. (2007) A Comparative Study of the Airside Performance of Heat Sinks Having Pin Fin Configurations. International Journal of Heat and Mass Transfer, 50, 4661-4667.
https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.006
[20]  Hossain, S., Ahamed, J.U., Akter, F., Das, D. and Saha, S. (2013) Heat Transfer Analysis of Pin Fin Array. International Conference on Mechanical Engineering and Renewable Energy, Chittagong, 24-27 December 2013.
[21]  Keren and Donald, O. (2009) Text Book on Process Heat Transfer. Mc. Graw Hill Publication, New York.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413