全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Syzygium cumini Seed Extract on the Memory Loss of Alzheimer’s Disease Model Rats

DOI: 10.4236/aad.2017.63005, PP. 53-73

Keywords: Alzheimer’s Disease, S. cumini, Memory, Amyloid Peptide, Lipid Peroxide, BDNF, TrKB, PSD-95 and SNAP-25

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alzheimer’s disease (AD) is the most prominent dementia-related disease and characterized by the presence of insoluble amyloid beta peptide (Aβ) fibers in or around the brain neurons of the affected person. Therefore, agent(s) capable of inhibiting brain amyloid deposition might delay the occurrence or retard the progress forwards of AD and related neurobehavioral symptoms. Here, we report whether, chronic oral administration of Syzygium cumini (locally known as Jam)-seed extract exerts protection against the progressive cognitive decline in the Aβ1-40-infused AD model rats. After 12 weeks of feeding with S. cumini seed extract (at 300 mg/kg BW), we evaluated the learning-related memory of the rats by 8-arm radial maze task, where we determined two types of memory errors, namely reference memory errors (RMEs) and working memory errors (WMEs). After completion of memory tests, rats were sacrificed and the levels of lipid peroxide (LPO), the Aβ1-40-burden, Aβ1-40-oligomers, proinflammatory TNFα, brain derived neurotrophic factor (BDNF), Tyrosine-kinase B (TrkB), postsynaptic-density protein 95 (PSD-95) and Synapse-associated protein (SNAP-25) were determined in the corticohippocampal tissues of the brain. In addition, in vitro antioxidative effects of S. cumini seed extract were evaluated. The oral administration of S. cumini extract significantly increased the memory-related learning ability of the AD model rats, concomitantly with reductions in the levels of corticohippocampal Aβ1-40-burden and Aβ1-40-oligomers. Furthermore, the extract suppressed the levels of TNFα and LPO in the corticohippocampal tissues of the AD rats and also the later in the plasma, suggesting an anti-oxidative and anti-inflammatory activities of the S. cumini extract in the brains of AD model rats. S. cumini extract also increased the levels of brain cognition and memory-related proteins, including BDNF, TrKB, PSD-95 and SNAP-25. We thus suggest that S. cumini-seed extract could be used in neurobehavioral deficits and associated pathogenesis of Alzheimer’s disease.

References

[1]  Selkoe, D.J. (1991) The Molecular Pathology of Alzheimer’s Disease. Neuron, 6, 487-498.
[2]  Serpell, L.C. (2000) Alzheimer’s Amyloid Fibrils: Structure and Assembly. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1502, 16-30.
[3]  Hashimoto, M., Hossain, S., Al Mamun, A., Matsuzaki, K. and Arai, H. (2016) Docosahexaenoic Acid: One Molecule Diverse Functions. Critical Reviews in Biotechnology, 37, 1-19.
[4]  Hashimoto, M., Hossain, S., Shimada, T., Sugioka, K., Yamasaki, H., Fujii, Y., Ishibashi, Y., Oka, J.I. and Shido, O. (2002) Docosahexaenoic Acid Provides Protection from Impairment of Learning Ability in Alzheimer’s Disease Model Rats. Journal of Neurochemistry, 81, 1084-1091.
https://doi.org/10.1046/j.1471-4159.2002.00905.x
[5]  Hossain, S., Hashimoto, M., Katakura, M., Miwa, K., Shimada, T. and Shido, O. (2009) Mechanism of Docosahexaenoic Acid-Induced Inhibition of in Vitro Aβ1-42 Fibrillation and Aβ1-42-Induced Toxicity in SH-S5Y5 Cells. Journal of Neurochemistry, 111, 568-579.
https://doi.org/10.1111/j.1471-4159.2009.06336.x
[6]  Al Mamun, A., Hashimoto, M., Katakura, M., Matsuzaki, K., Hossain, S., Arai, H. and Shido, O. (2014) Neuroprotective Effect of Madecassoside Evaluated Using Amyloid β1-42-Mediated in Vitro and in Vivo Alzheimer’s Disease Models. International Journal of Indigenous Medicinal Plants, 47, 1669-1682.
[7]  Hung, C.-W., Chen, Y.-C., Hsieh, W.-L., Chiou, S.-H. and Kao, C.-L. (2010) Ageing and Neurodegenerative Diseases. Ageing Research Reviews, 9, S36-S46.
[8]  Van Ham, T.J., Breitling, R., Swertz, M.A. and Nollen, E.A. (2009) Neurodegenerative Diseases: Lessons from Genome-Wide Screens in Small Model Organisms. EMBO Molecular Medicine, 1, 360-370.
https://doi.org/10.1002/emmm.200900051
[9]  Perry, G., Cash, A.D. and Smith, M.A. (2002) Alzheimer Disease and Oxidative Stress. BioMed Research International, 2, 120-123.
https://doi.org/10.1155/S1110724302203010
[10]  Montine, T.J., Amarnath, V., Martin, M.E., Strittmatter, W.J. and Graham, D.G. (1996) E-4-Hydroxy-2-Nonenal Is Cytotoxic and Cross-Links Cytoskeletal Proteins in P19 Neuroglial Cultures. The American Journal of Pathology, 148, 89.
[11]  Sayre, L.M., Zelasko, D.A., Harris, P.L., Perry, G., Salomon, R.G. and Smith, M.A. (1997) 4-Hydroxynonenal-Derived Advanced Lipid Peroxidation End Products Are Increased in Alzheimer’s Disease. Journal of Neurochemistry, 68, 2092-2097.
https://doi.org/10.1046/j.1471-4159.1997.68052092.x
[12]  Smith, C., Carney, J.M., Starke-Reed, P., Oliver, C., Stadtman, E., Floyd, R. and Markesbery, W. (1991) Excess Brain Protein Oxidation and Enzyme Dysfunction in Normal Aging and in Alzheimer Disease. Proceedings of the National Academy of Sciences, 88, 10540-10543.
https://doi.org/10.1073/pnas.88.23.10540
[13]  Smith, M.A., Rudnicka-Nawrot, M., Richey, P.L., Praprotnik, D., Mulvihill, P., Miller, C.A., Sayre, L.M. and Perry, G. (1995) Carbonyl-Related Posttranslational Modification of Neurofilament Protein in the Neurofibrillary Pathology of Alzheimer’s Disease. Journal of Neurochemistry, 64, 2660-2666.
https://doi.org/10.1046/j.1471-4159.1995.64062660.x
[14]  Nunomura, A., Castellani, R.J., Zhu, X., Moreira, P.I., Perry, G. and Smith, M.A. (2006) Involvement of Oxidative Stress in Alzheimer Disease. Journal of Neuropathology & Experimental Neurology, 65, 631-641.
https://doi.org/10.1097/01.jnen.0000228136.58062.bf
[15]  Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K., Ghanbari, H., Wataya, T. and Shimohama, S. (2001) Oxidative Damage Is the Earliest Event in Alzheimer Disease. Journal of Neuropathology & Experimental Neurology, 60, 759-767.
https://doi.org/10.1093/jnen/60.8.759
[16]  Montiel, T., Quiroz-Baez, R., Massieu, L. and Arias, C. (2006) Role of Oxidative Stress on β-Amyloid Neurotoxicity Elicited during Impairment of Energy Metabolism in the Hippocampus: Protection by Antioxidants. Experimental Neurology, 200, 496-508.
[17]  Devore, E.E., Grodstein, F., van Rooij, F.J., Hofman, A., Stampfer, M.J., Witteman, J.C. and Breteler, M.M. (2010) Dietary Antioxidants and Long-Term Risk of Dementia. Archives of Neurology, 67, 819-825.
https://doi.org/10.1001/archneurol.2010.144
[18]  Sano, M., Ernesto, C., Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C.W. and Pfeiffer, E. (1997) A Controlled Trial of Selegiline, Alpha-Tocopherol, or Both as Treatment for Alzheimer’s Disease. New England Journal of Medicine, 336, 1216-1222.
https://doi.org/10.1056/NEJM199704243361704
[19]  Sung, S., Yao, Y., Uryu, K., Yang, H., Lee, V.M., Trojanowski, J.Q. and Praticò, D. (2004) Early Vitamin E Supplementation in Young But Not Aged Mice Reduces Aβ Levels and Amyloid Deposition in a Transgenic Model of Alzheimer’s Disease. The FASEB Journal, 18, 323-325.
[20]  Nakashima, H., Ishihara, T., Yokota, O., Terada, S., Trojanowski, J.Q., Lee, V.M.-Y. and Kuroda, S. (2004) Effects of α-Tocopherol on an Animal Model of Tauopathies. Free Radical Biology and Medicine, 37, 176-186.
[21]  Dias-Santagata, D., Fulga, T.A., Duttaroy, A. and Feany, M.B. (2007) Oxidative Stress Mediates Tau-Induced Neurodegeneration in Drosophila. The Journal of Clinical Investigation, 117, 236-245.
https://doi.org/10.1172/JCI28769
[22]  Pavlik, V.N., Doody, R.S., Rountree, S.D. and Darby, E.J. (2009) Vitamin E Use Is Associated with Improved Survival in an Alzheimer’s Disease Cohort. Dementia and Geriatric Cognitive Disorders, 28, 536-540.
https://doi.org/10.1159/000255105
[23]  Rastogi, R.P., Mehrotra, B. and Pastogi, R.P. (1995) Compendium of Indian Medicinal Plants. Central Drug Research Institute; Publications & Information Directorate.
[24]  Mahmoud, I.I., Marzouk, M.S., Moharram, F.A., El-Gindi, M.R. and Hassan, A.M. (2001) Acylated Flavonol Glycosides from Eugenia Jambolana Leaves. Phytochemistry, 58, 1239-1244.
[25]  Reynertson, K.A., Basile, M.J. and Kennelly, E.J. (2005) Antioxidant Potential of Seven Myrtaceous Fruits. Ethnobotany Research and Applications, 3, 25-36.
https://doi.org/10.17348/era.3.0.25-36
[26]  Nadkami, K. (1976) Indian Materia Medica. Volume 1 (Revised and Enlarged by Nadkarni, AK), Popular Prakashan Pvt. Ltd., Bombay, 1278-1280.
[27]  Veigas, J.M., Narayan, M.S., Laxman, P.M. and Neelwarne, B. (2007) Chemical Nature, Stability and Bioefficacies of Anthocyanins from Fruit Peel of Syzygium cumini Skeels. Food Chemistry, 105, 619-627.
[28]  Shamkuwar, P.B., Pawar, D.P. and Chauhan, S.S. (2012) Antidiarrhoeal Activity of Seeds of Syzygium cumini L. Journal of Pharmacy Research, 5, 5537-5539.
[29]  Jain, S.K. (1991) Dictionary of Indian Folk Medicine and Ethnobotany. Deep Publications.
[30]  Bhuyan, Z.A., Rokeya, B., Masum, N., Hossain, S. and Mahmud, I. (2010) Antidiabetic Effect of Syzygium cumini L. Seed on Type 2 Diabetic Rats. Dhaka University Journal of Biological Sciences, 19, 157-164.
[31]  Hossain, S., Chowdhury, I.H., Basunia, M.A., Nahar, T., Rahaman, A., Choudhury, B.K., Choudhuri, S.K., Mahmud, I. and Uddin, B. (2011) Syzygium cumini Seed Extract Protects the Liver against Lipid Peroxidation with Concurrent Amelioration of Hepatic Enzymes and Lipid Profile of Alcoholic Rats. Journal of Complementary and Integrative Medicine, 8.
https://doi.org/10.2202/1553-3840.1445
[32]  Hossain, S., Rahaman, A., Nahar, T., Basunia, M.A., Mowsumi, F.R., Uddin, B., Shahriar, M. and Mahmud, I. (2012) Syzygium cumini (L.) Skeels Seed Extract Ameliorates in Vitro and in Vivo Oxidative Potentials of the Brain Cerebral Cortex of Alcohol-Treated Rats. Oriental Pharmacy and Experimental Medicine, 12, 59-66.
https://doi.org/10.1007/s13596-011-0044-0
[33]  Islam, J., Haque, M., Rahaman, A. and Hossain, S. (2014) Syzygium cumini (L.) Seed Extract Protects Embryofoetal Brains against Intrauterine Oxidative Toxicity in Rats during Hypoxiareperfusion Injury. International Journal for Pharmaceutical Research Scholars, 3, 170-177.
[34]  Rahaman, A., Hossain, S., Rahman, M., Hossain, I., Nahar, T., Uddin, B. and Khalil, I. (2013) Syzygium cumini (L.) Seed Extract Improves Memory Related Learning Ability of Old Rats in Eight Arm Radial Maze. Journal of Pharmacognosy and Phytochemistry, 1, 85-94.
[35]  Paxinos, G. and Watson, C. (1986) The Rat Brain in Stereotaxic Coordinates. Academic Press, New York.
[36]  Oka, J.-I., Suzuki, E., Goto, N. and Kameyama, T. (1999) Endogenous GLP-1 Modulates Hippocampal Activity in β-Amyloid Protein-Treated Rats. Neuroreport, 10, 2961-2964.
https://doi.org/10.1097/00001756-199909290-00016
[37]  Gamoh, S., Hashimoto, M., Sugioka, K., Hossain, M.S., Hata, N., Misawa, Y. and Masumura, S. (1999) Chronic Administration of Docosahexaenoic Acid Improves Reference Memory-Related Learning Ability in Young Rats. Neuroscience, 93, 237-241.
[38]  Hashimoto, M., Hossain, S., Agdul, H. and Shido, O. (2005) Docosahexaenoic Acid-Induced Amelioration on Impairment of Memory Learning in Amyloid β-Infused Rats Relates to the Decreases of Amyloid β and Cholesterol Levels in Detergent-Insoluble Membrane Fractions. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1738, 91-98.
[39]  Hossain, S., Bhowmick, S., Jahan, S., Rozario, L., Sarkar, M., Islam, S., Basunia, M.A., Rahman, A., Choudhury, B.K. and Shahjalal, H. (2016) Maternal Lead Exposure Decreases the Levels of Brain Development and Cognition-Related Proteins with Concomitant Upsurges of Oxidative Stress, Inflammatory Response and Apoptosis in the Offspring Rats. Neurotoxicology, 56, 150-158.
[40]  Akter, F., Haque, M., Islam, J., Rahaman, A., Bhowmick, S. and Hossain, S. (2015) Chronic Administration of Curcuma Longa Extract Improves Spatial Memory-Related Learning Ability in Aged Rats by Inhibiting Brain Cortico-Hippocampal Oxidative Stress and TNFα. Advances in Alzheimer’s Disease, 4, 78-89.
https://doi.org/10.4236/aad.2015.43008
[41]  Chang, C.-C., Yang, M.-H., Wen, H.-M. and Chern, J.-C. (2002) Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drug Analysis, 10, 178-182.
[42]  Terry, R.D., Peck, A., DeTeresa, R., Schechter, R. and Horoupian, D.S. (1981) Some Morphometric Aspects of the Brain in Senile Dementia of the Alzheimer Type. Annals of Neurology, 10, 184-192.
https://doi.org/10.1002/ana.410100209
[43]  Dickson, D.W. (1997) The Pathogenesis of Senile Plaques. Journal of Neuropathology & Experimental Neurology, 56, 321-339.
https://doi.org/10.1097/00005072-199704000-00001
[44]  Lue, L.-F., Kuo, Y.-M., Roher, A.E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J.H., Rydel, R.E. and Rogers, J. (1999) Soluble Amyloid β Peptide Concentration as a Predictor of Synaptic Change in Alzheimer’s Disease. The American Journal of Pathology, 155, 853-862.
[45]  Klyubin, I., Walsh, D.M., Lemere, C.A., Cullen, W.K., Shankar, G.M., Betts, V., Spooner, E.T., Jiang, L., Anwyl, R. and Selkoe, D.J. (2005) Amyloid β Protein Immunotherapy Neutralizes Aβ Oligomers That Disrupt Synaptic Plasticity in Vivo. Nature Medicine, 11, 556-561.
https://doi.org/10.1038/nm1234
[46]  Uttara, B., Singh, A.V., Zamboni, P. and Mahajan, R. (2009) Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Current Neuropharmacology, 7, 65-74.
https://doi.org/10.2174/157015909787602823
[47]  Richardson, J., Subbarao, K. and Ang, L. (1990) Biochemical Indices of Peroxidation in Alzheimer’s and Control Brains. Transactions of the American Society for Neurochemistry, 21, 113.
[48]  McCaulley, M.E. and Grush, K.A. (2015) Alzheimer’s Disease: Exploring the Role of Inflammation and Implications for Treatment. International Journal of Alzheimer’s Disease, 2015.
[49]  Griffin, W., Sheng, J., Royston, M., Gentleman, S., McKenzie, J., Graham, D., Roberts, G. and Mrak, R. (1998) Glial-Neuronal Interactions in Alzheimer’s Disease: The Potential Role of a “Cytokine Cycle” in Disease Progression. Brain Pathology, 8, 65-72.
https://doi.org/10.1111/j.1750-3639.1998.tb00136.x
[50]  In’T Veld, B.A., Ruitenberg, A., Hofman, A., Launer, L.J., van Duijn, C.M., Stijnen, T., Breteler, M.M. and Stricker, B.H. (2001) Nonsteroidal Antiinflammatory Drugs and the Risk of Alzheimer’s Disease. New England Journal of Medicine, 345, 1515-1521.
https://doi.org/10.1056/NEJMoa010178
[51]  Etminan, M., Gill, S. and Samii, A. (2003) Effect of Non-Steroidal Anti-Inflammatory Drugs on Risk of Alzheimer’s Disease: Systematic Review and Meta-Analysis of Observational Studies. BMJ, 327, 128.
https://doi.org/10.1136/bmj.327.7407.128
[52]  Chapman, P.F., White, G.L., Jones, M.W., Cooper-Blacketer, D., Marshall, V.J., Irizarry, M., Younkin, L., Good, M.A., Bliss, T. and Hyman, B.T. (1999) Impaired Synaptic Plasticity and Learning in Aged Amyloid Precursor Protein Transgenic Mice. Nature Neuroscience, 2, 271-276.
https://doi.org/10.1038/6374
[53]  Stephan, A., Laroche, S. and Davis, S. (2001) Generation of Aggregated β-Amyloid in the Rat Hippocampus Impairs Synaptic Transmission and Plasticity and Causes Memory Deficits. Journal of Neuroscience, 21, 5703-5714.
[54]  Balducci, C., Beeg, M., Stravalaci, M., Bastone, A., Sclip, A., Biasini, E., Tapella, L., Colombo, L., Manzoni, C. and Borsello, T. (2010) Synthetic Amyloid-β Oligomers Impair Long-Term Memory Independently of Cellular Prion Protein. Proceedings of the National Academy of Sciences, 107, 2295-2300.
https://doi.org/10.1073/pnas.0911829107
[55]  Lu, B. (2003) BDNF and Activity-Dependent Synaptic Modulation. Learning & Memory, 10, 86-98.
https://doi.org/10.1101/lm.54603
[56]  Cohen-Cory, S., Kidane, A.H., Shirkey, N.J. and Marshak, S. (2010) Brain-Derived Neurotrophic Factor and the Development of Structural Neuronal Connectivity. Developmental Neurobiology, 70, 271-288.
https://doi.org/10.1002/dneu.20774
[57]  Sørensen, J.B., Matti, U., Wei, S.-H., Nehring, R.B., Voets, T., Ashery, U., Binz, T., Neher, E. and Rettig, J. (2002) The SNARE Protein SNAP-25 Is Linked to Fast Calcium Triggering of Exocytosis. Proceedings of the National Academy of Sciences, 99, 1627-1632.
https://doi.org/10.1073/pnas.251673298
[58]  Ghanizadeh, A. (2011) SNAP-25 May Mediate the Association of Lead Exposure and ADHD. European Journal of Paediatric Neurology, 15, 280-281.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413