全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effects of Fe2O3 and B2O3 on the Glass Structural, Thermal, in Vitro Degradation Properties of Phosphate Based Glasses

DOI: 10.4236/njgc.2017.74009, PP. 100-115

Keywords: Phosphate Based Glass, Boron, Iron, Thermal Properties, Degradation Study

Full-Text   Cite this paper   Add to My Lib

Abstract:

Currently, phosphate based glasses have been potential future biomaterial for medical application due to excellent cytocompatibility and fully bioresorbability. In this study, phosphate based glass system with composition of 48P2O5-12B2O3-(25-X)MgO-14CaO-1Na2O-(X)Fe2O3 (X = 6, 8, 10) and

45P2O5-(Y)B2O3-(32-Y)MgO-14CaO-1Na2O-8Fe2O3 (Y = 12, 15, 20), was prepared via a melting quenching process. The effect of replacing MgO with Fe
References

[1]  Lee, I.-H., Shin, S.-H., Foroutan, F., Lakhkar, N.J., Gong, M.-S. and Knowles, J.C. (2013) Effects of Magnesium Content on the Physical, Chemical and Degradation Properties in a MgO-CaO-Na2O-P2O5 Glass System. Journal of Non-Crystalline Solids, 363, 57-63.
https://doi.org/10.1016/j.jnoncrysol.2012.11.036
[2]  Kellomaki, M., Niiranen, H., Puumanen, K., Ashammakhi, N., Waris, T. and Tirmala, P. (2000) Bioabsorbable Scaffolds for Guided Bone Regeneration and Generation. Biomaterials, 21, 2495-2505.
https://doi.org/10.1016/S0142-9612(00)00117-4
[3]  Mohammadi, M.S., Ahmed, I., Muja, N., Rudd, C.D., Bureau, M.N. and Nazhat, S.N. (2011) Effect of Phosphate-Based Glass Fibre Surface Properties on Thermally Produced Poly(Lactic Acid) Matrix Composites. Journal of Materials Science: Materials in Medicine, 22, 2659-2672.
https://doi.org/10.1007/s10856-011-4453-x
[4]  Haque, P., Parsons, A., Ahmed, I., Irvine, D.J., Walker, G.S. and Rudd, C.D. (2010) Oligomer Coupling Agents for Phosphate Based Glass Fibre/Pla Composites. International Committee on Composite Materials, 1854-1860.
[5]  Jiang, G., Evans, M.E., Jones, I.A., Rudd, C.D., Scotchford, C.A. and Walker, G.S. (2005) Preparation of Poly(Epsilon-Caprolactone)/Continuous Bioglass Fibre Composite Using Monomer Transfer Moulding for Bone Implant. Biomaterials, 26, 2281-2288.
https://doi.org/10.1016/j.biomaterials.2004.07.042
[6]  Hench, L.L. and Wilson, J. (1984) Surface-Active Biomaterials. Science, 226, 630-636.
https://doi.org/10.1126/science.6093253
[7]  Hench, L.L., Splinter, R.J., Allen, W.C. and Greenlee, T.K. (1971) Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials. Journal of Biomedical Materials Research, 5, 117-141.
https://doi.org/10.1002/jbm.820050611
[8]  Jones, J.R. (2013) Review of Bioactive Glass: From Hench to Hybrids. Acta Biomaterialia, 9, 4457-4486.
https://doi.org/10.1016/j.actbio.2012.08.023
[9]  Moya, A., Aza, P.N.D., Pena, P. and Aza Pendas, S.D. (2007) Bioactive Glasses and Glass-Ceramics. The Journal of the Spanish Ceramic and Glass Society, 46, 45-55.
[10]  Abou Neel, E.A., Pickup, D.M., Valappil, S.P., Newport, R.J. and Knowles, J.C. (2009) Bioactive Functional Materials: A Perspective on Phosphate-Based Glasses. Journal of Materials Chemistry, 19, 690.
https://doi.org/10.1039/B810675D
[11]  Brow, R.K. (2000) Review: The Structure of Simple Phosphate Glasses. Journal of Non-Crystalline Solids, 263-264, 1-28.
[12]  Lee, Y.K. and LeGeros, R.Z. (2008) Calcium Phosphate Glass: Potential as Biomaterial for Hard Tissue Repair. Key Engineering Materials, 377, 43-72.
https://doi.org/10.4028/www.scientific.net/KEM.377.43
[13]  Ahmed, I., Ready, D., Wilson, M. and Knowles, J.C. (2006) Antimicrobial Effect of Silver-Doped Phosphate-Based Glasses. Journal of Biomedical Materials Research, Part A, 79, 618-626.
https://doi.org/10.1002/jbm.a.30808
[14]  Abou Neel, E., Ahmed, I., Pratten, J., Nazhat, S.N. and Knowles, J.C. (2005) Characterisation of Antibacterial Copper Releasing Degradable Phosphate Glass Fibres. Biomaterials, 26, 2247-2254.
[15]  Abou Neel, E.A., Ahmed, I., Blaker, J.J., Bismarck, A., Boccaccini, A.R., Lewis, M.P., Nazhat, S.N. and Knowles, J.C. (2005) Effect of Iron on the Surface, Degradation and Ion Release Properties of Phosphate-Based Glass Fibres. Acta Biomaterialia, 1, 553-563.
[16]  Abou Neel, E.A., Ahmed, I. and Knowles, J.C. (2007) Investigation of the Mixed Alkali Effect in a Range of Phosphate Glasses. Key Engineering Materials, 330-332, 161-164.
https://doi.org/10.4028/www.scientific.net/KEM.330-332.161
[17]  Ahmed, I., Parsons, A.J., Palmer, G., Knowles, J.C., Walker, G.S. and Rudd, C.D. (2008) Weight Loss, Ion Release and Initial Mechanical Properties of a Binary Calcium Phosphate Glass Fibre/PCL Composite. Acta Biomaterialia, 4, 1307-1314.
[18]  Abou Neel, E.A. and Knowles, J.C. (2008) Physical and Biocompatibility Studies of Novel Titanium Dioxide Doped Phosphate-Based Glasses for Bone Tissue Engineering Applications. Journal of Materials Science, Materials in Medicine, 19, 377-386.
https://doi.org/10.1007/s10856-007-3079-5
[19]  Parsons, A.J., Evans, M., Rudd, C.D. and Scotchford, C.A. (2004) Synthesis and Degradation of Sodium Iron Phosphate Glasses and Their in Vitro Cell Response. Journal of Biomedical Materials Research, Part A, 71, 283-291.
https://doi.org/10.1002/jbm.a.30161
[20]  Ahmed, I., Parsons, A., Jones, A., Walker, G., Scotchford, C. and Rudd, C. (2010) Cytocompatibility and Effect of Increasing MgO Content in a Range of Quaternary Invert Phosphate-Based Glasses. Journal of Biomaterials Applications, 24, 555-575.
https://doi.org/10.1177/0885328209102761
[21]  Hasan, M.S., Ahmed, I., Parsons, A.J., Walker, G.S. and Scotchford, C.A. (2012) Material Characterisation and Cytocompatibility Assessment of Quinternary Phosphate Glasses. Journal of Materials Science, Materials in Medicine, 23, 2531-2541.
https://doi.org/10.1007/s10856-012-4708-1
[22]  Massera, J., Claireaux, C., Lehtonen, T., Tuominen, J., Hupa, L. and Hupa, M. (2011) Control of the Thermal Properties of Slow Bioresorbable Glasses by Boron Addition. Journal of Non-Crystalline Solids, 357, 3623-3630.
[23]  Karabulut, M., Yuce, B., Bozdogan, O., Ertap, H. and Mammadov, G.M. (2011) Effect of Boron Addition on the Structure and Properties of Iron Phosphate Glasses. Journal of Non-Crystalline Solids, 357, 1455-1462.
[24]  Yuan, G., Zhang, T. and Inoue, A. (2003) Thermal Stability, Glass-Forming Ability and Mechanical Properties of Mg-Y-Zn-Cu Glassy Alloys. Materials Transactions, 44, 2271-2275.
https://doi.org/10.2320/matertrans.44.2271
[25]  Gaylord, S., Tincher, B., Petit, L. and Richardson, K. (2009) Viscosity Properties of Sodium Borophosphate Glasses. Materials Research Bulletin, 44, 1031-1035.
[26]  Sharmin, N., Hasan, M.S., Parsons, A.J., Furniss, D., Scotchford, C.A., Ahmed, I. and Rudd, C.D. (2013) Effect of Boron Addition on the Thermal, Degradation, and Cytocompatibility Properties of Phosphate-Based Glasses. BioMed Research International, 2013, 1-12.
https://doi.org/10.1155/2013/902427
[27]  Lim, J.W., Schmitt, M.L., Brow, R.K. and Yung, S.W. (2010) Properties and Structures of Tin Borophosphate Glasses. Journal of Non-Crystalline Solids, 356, 1379-1384.
[28]  Sharmin, N., Rudd, C.D., Parsons, A.J. and Ahmed, I. (2016) Structure, Viscosity and Fibre Drawing Properties of Phosphate-Based Glasses: Effect of Boron and Iron Oxide Addition. Journal of Materials Science, 51, 7523-7535.
https://doi.org/10.1007/s10853-016-0032-3
[29]  Zhu, C., Ahmed, I., Parsons, A., Hossain, K.Z., Rudd, C., Liu, J. and Liu, X. (2017) Structural, Thermal, in Vitro Degradation and Cytocompatibility Properties of P2O5-B2O3-CaO-MgO-Na2O-Fe2O3 Glasses. Journal of Non-Crystalline Solids, 457, 77-85.
[30]  Wang, F., Liao, Q., Xiang, G. and Pan, S. (2014) Thermal Properties and FTIR Spectra of K2O/Na2O Iron Borophosphate Glasses. Journal of Molecular Structure, 1060, 176-181.
[31]  Hruby, A. (1972) Evaluation of Glass-Forming Tendency by Means of DTA. Czechoslovak Journal of Physics B, 22, 1187-1193.
https://doi.org/10.1007/BF01690134
[32]  Haque, P., Ahmed, I., Parsons, A., Felfel, R., Walker, G. and Rudd, C. (2013) Degradation Properties and Microstructural Analysis of 40P2O5-24MgO-16CaO-16Na2O-4Fe2O3 Phosphate Glass Fibres. Journal of Non-Crystalline Solids, 375, 99-109.
[33]  Shih, P.Y. and Chin, T.S. (1999) Effect of Redox State of Copper on the Properties of P2O5-Na2O-CuO Glasses. Materials Chemistry and Physics, 60, 50-57.
[34]  Gaafar, M.S., Marzouk, S.Y., Zayed, H.A., Soliman, L.I. and Serag El-Deen, A.H. (2013) Structural Studies and Mechanical Properties of Some Borate Glasses Doped with Different Alkali and Cobalt Oxides. Current Applied Physics, 13, 152-158.
[35]  Moustafa, Y.M. and El-Egili, K. (1998) Infrared Spectra of Sodium Phosphate Glasses. Journal of Non-Crystalline Solids, 240, 144-153.
[36]  Ciceo-Lucacel, R., Radu, T., Ponta, O. and Simon, V. (2014) Novel Selenium Containing Boro-Phosphate Glasses: Preparation and Structural Study. Materials Science and Engineering: C, 39, 61-66.
[37]  Raguenet, B., Tricot, G., Silly, G., Ribes, M. and Pradel, A. (2012) The Mixed Glass Former Effect in Twin-Roller Quenched Lithium Borophosphate Glasses. Solid State Ionics, 208, 25-30.
[38]  Rani, S., Sanghi, S., Ahlawat, N. and Agarwal, A. (2014) Influence of Bi2O3 on Thermal, Structural and Dielectric Properties of Lithium Zinc Bismuth Borate Glasses. Journal of Alloys and Compounds, 597, 110-118.
[39]  Balachander, L., Ramadevudu, G., Shareefuddin, M., Sayanna, R. and Venudhar, Y.C. (2013) IR Analysis of Borate Glasses Containing Three Alkali Oxides. Science Asia, 39, 278.
https://doi.org/10.2306/scienceasia1513-1874.2013.39.278
[40]  Abdelghany, A.M. (2012) Combined DFT, Deconvolution Analysis for Structural Investigation of Copper-Doped Lead Borate Glasses. The Open Spectroscopy Journal, 9-14.
https://doi.org/10.2174/1874383801206010009
[41]  Valappil, S.P., Ready, D., Neel, E.A.A., Pickup, D.M., Chrzanowski, W., O’Dell, L.A., Newport, R.J., Smith, M.E., Wilson, M. and Knowles, J.C. (2008) Antimicrobial Gallium-Doped Phosphate-Based Glasses. Advanced Functional Materials, 18, 732-741.
https://doi.org/10.1002/adfm.200700931
[42]  Carta, D., Pickup, D.M., Knowles, J.C., Ahmed, I., Smith, M.E. and Newport, R.J. (2007) A Structural Study of Sol-Gel and Melt-Quenched Phosphate-Based Glasses. Journal of Non-Crystalline Solids, 353, 1759-1765.
[43]  Abid, M., Et-tabirou, M. and Taibi, M. (2003) Structure and DC Conductivity of Lead Sodium Ultraphosphate Glasses. Materials Science and Engineering B, 97, 20-24.
[44]  Moustafa, Y.M., El-Egili, K., Doweidar, H. and Abbas, I. (2004) Structure and Electric Conduction of Fe2O3-P2O5 Glasses. Physica B: Condensed Matter, 353, 82-91.
[45]  Magyari, K., Stefan, R., Vodnar, D.C., Vulpoi, A. and Baia, L. (2014) The Silver Influence on the Structure and Antibacterial Properties of the Bioactive 10B2O3-30Na2O-60P2O2 Glass. Journal of Non-Crystalline Solids, 402, 182-186.
[46]  Saranti, A., Koutselas, I. and Karakassides, M.A. (2006) Bioactive Glasses in the System CaO-B2O3-P2O5: Preparation, Structural Study and in Vitro Evaluation. Journal of Non-Crystalline Solids, 352, 390-398.
[47]  Vosejpková, K., Koudelka, L., Cernosek, Z., Mosner, P., Montagne, L. and Revel, B. (2012) Structural Studies of Boron and Tellurium Coordination in Zinc Borophosphate Glasses by 11B MAS NMR and Raman Spectroscopy. Journal of Physics and Chemistry of Solids, 73, 324-329.
[48]  Bingham, P.A., Hand, R.J., Forder, S.D., Lavaysierre, A., Deloffre, F., Kilcoyne, S.H. and Yasin, I. (2006) Structure and Properties of Iron Borophosphate Glasses. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 47, 313-317.
[49]  Elbers, S., Strojek, W., Koudelka, L. and Eckert, H. (2005) Site Connectivities in Silver Borophosphate Glasses: New Results from 11B{31P} and 31P{11B} Rotational Echo Double Resonance NMR Spectroscopy. Solid State Nuclear Magnetic Resonance, 27, 65-76.
[50]  Koudelka, L. and Mosner, P. (2000) Borophosphate Glasses of the ZnO-B2O3-P2O5 System. Materials Letters, 42, 194-199.
[51]  Doweidar, H., Moustafa, Y.M., El-Egili, K. and Abbas, I. (2005) Infrared Spectra of Fe2O3-PbO-P2O5 Glasses. Vibrational Spectroscopy, 37, 91-96.
[52]  Baia, L., Muresan, D., Burean, E., Simon, V., Kiefer, W. and Simon, S. (2004) IR and Raman Spectroscopic Investigations of the Iron Doping Effect on the Structure of Phosphate Glasses. Proceedings of the 19th International Conference on Raman Spectroscopy, 502-503.
[53]  Parsons, A.J., Burling, L.D., Scotchford, C.A., Walker, G.S. and Rudd, C.D. (2006) Properties of Sodium-Based Ternary Phosphate Glasses Produced from Readily Available Phosphate Salts. Journal of Non-Crystalline Solids, 352, 5309-5317.
[54]  Karabulut, M., Marasinghe, G.K., Ray, C.S., Day, D.E., Waddill, G.D., Booth, C.H., Allen, P.G., Bucher, J.J., Caulder, D.L. and Shuh, D.K. (2002) An Investigation of the Local Iron Environment in Iron Phosphate Glasses Having Different Fe(II) Concentrations. Journal of Non-Crystalline Solids, 306, 182-192.
[55]  Donald, I.W., Metcalfe, B.L., Fong, S.K. and Gerrard, L.A. (2006) The Influence of Fe2O3 and B2O3 Additions on the Thermal Properties, Crystallization Kinetics and Durability of a Sodium Aluminum Phosphate Glass. Journal of Non-Crystalline Solids, 352, 2993-3001.
[56]  Concas, G., Congiu, F., Manca, E., Muntoni, C. and Pinna, G. (1995) Mossbauer Spectroscopic Investigation of Some Iron-Containing Sodium Phosphate Glasses. Journal of Non-Crystalline Solids, 1992-1993, 175-178.
[57]  Dey, K., Sharmin, N., Khan, R.A., Nahar, S., Parsons, A.J. and Rudd, C.D. (2011) Effect of Iron Phosphate Glass on the Physico-Mechanical Properties of Jute Fabric-Reinforced Polypropylene-Based Composites. Journal of Thermoplastic Composite Materials, 24, 695-711.
https://doi.org/10.1177/0892705711401848
[58]  Yu, X.Y., Day, D.E., Long, G.J. and Brow, R.K. (1997) Properties and Structure of Sodium-Iron Phosphate Glasses. Journal of Non-Crystalline Solids, 215, 21-31.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413