全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Facile Synthesis of Nitriles and Amides from Aldehyde over Heterogeneous Reusable Copper Fluorapatite (CuFAP) Catalyst under Neat Reaction Condition

DOI: 10.4236/ojsta.2017.63003, PP. 23-36

Keywords: Heterogeneous, Recyclable, Nitriles, Amide, Aldehyde, Copper Fluorapatite

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new robust heterogeneous, versatile, an environmentally benign, eco-friendly, recyclable CuFAP catalyst has been developed for the direct synthesis of nitriles and amides from aldehydes at 100°C for 6 h and 4 h, respectively, under neat reaction condition using hydroxylamine hydrochloride in the presence and the absence of tosyl chloride, respectively. Also the recyclability of catalyst as well as influence of solvents, additives on catalysts performance was investigated. The protocol can be considered as an alternative to conventional method for the synthesis of nitriles and amides in good to excellent yields. A highlight of our protocol is the easy separation of catalyst from reaction mixture, hence the catalyst is reused several times without significant loss of its catalytic activity.

References

[1]  Khanna, I.K., Weier, R.M., Yu, Y., Xu, X.D., Koszyk, F.J., Callins, P.W., Kobaldt, C.M,.Veenhuizen, A.W., Perkins, W.E., Casler, J.J., Masferrer, J.L., Zhung, Y.Y., Gregory, S.A., Seibert, K., and Isakson, P.C. (1997) 1,2-Diarylimidazoles as Potent, Cyclooxygenase-2 Selective, and Orally Active Antiinflammatory Agents. Journal of Medicinal Chemistry, 40, 1626-1647.
https://doi.org/10.1021/jm9700225
[2]  Fabiani, M.E. (1999) Angiotensin Receptor Subtypes: Novel Targets for Cardiovascular Therapy. Drug News Perspect, 12, 207-215.
[3]  Chihiro, M., Nagamoto, H., Takemura, I., Kitano, K., Komatsu, H., Sekiguchi, K., Tabusa, F., Mori, T., Tominnaga, M. and Yabuuchi, Y. (1995) Novel Thiazole Derivatives as Inhibitors of Superoxide Production by Human Neutrophils: Synthesis and Structure-Activity Relationships. Journal of Medicinal Chemistry, 38, 353-358.
https://doi.org/10.1021/jm00002a017
[4]  Miller, J.S. and Manson, J.L. (2001) Designer Magnets Containing Cyanides and Nitriles. Accounts of Chemical Research, 34, 563-570.
https://www.ncbi.nlm.nih.gov/pubmed/11456474
https://doi.org/10.1021/ar0000354
[5]  Fatiadi, A.J. (1983) Preparation and Synthetic Applications of Cyano Compounds. In: Patai, S. and Rappaport Z., Eds., Wiley, New York.
https://doi.org/10.1002/9780470771709.ch9
[6]  Magnus, P., Scott, D.A. and Fielding, M.R. (2001) Direct Conversion of α,β-Unsaturated Nitriles into Cyanohydrins Using Mn(dpm)3 Catalyst, Dioxygen and Phenylsilane. Tetrahedron Letters, 42, 4127-4129.
https://doi.org/10.1016/S0040-4039(01)00693-1
[7]  Xu, W.B., Xu, Q.H., Zhang, Z.F. and Li, J.Z. (2014) Copper(I)-Oxide-Mediated Cyanation of Arenediazonium Tetrafluoroborates with Trimethylsilyl Cyanide: A Method for Synthesizing Aromatic Nitriles. Asian Journal of Organic Chemistry, 3, 1062-1065.
https://doi.org/10.1002/ajoc.201402084
[8]  Sandmeyer, T. (1884) Ueber die Ersetzung der Ueber die Ersetzung der Amidgruppe durch Chlor in den aromatischen Substanzen. Berichte der Deutschen Chemischen Gesellschaft, 17, 1633-1635.
https://doi.org/10.1002/cber.18840170219
[9]  Kochi, J.K. (1957) The Mechanism of the Sandmeyer and Meerwein Reactions. Journal of the American Chemical Society, 79, 2942-2948.
https://doi.org/10.1021/ja01568a066
[10]  Lindley, J. (1984) Copper Assisted Nucleophilic Substitution of Aryl Halogen. Tetrahedron, 40, 1433-1456.
https://doi.org/10.1016/S0040-4020(01)91791-0
[11]  Hodgson, H.H. (1947) The Saydimeyer Reaction. Chemical Reviews, 40, 251-277.
https://doi.org/10.1021/cr60126a003
[12]  Ushkov, A.V. and Grushin, V.V. (2011) Rational Catalysis Design on the Basis of Mechanistic Understanding: Highly Efficient Pd-Catalyzed Cyanation of Aryl Bromides with NaCN in Recyclable Solvents. Journal of the American Chemical Society, 133, 10999-11005.
https://doi.org/10.1021/ja2042035
[13]  Yeung, P.Y, So, C.M., Lau, C.P. and Kwong, F.Y. (2011) A Mild and Efficient Palladium-Catalyzed Cyanation of Aryl Chlorides with K4[Fe(CN)6]. Organic Letters, 13, 648-651.
https://doi.org/10.1021/ol1028892
[14]  Zanon, J., Klapars, A. and Buchwald, S.L. (2003) Copper-Catalyzed Domino Halide Exchange-Cyanation of Aryl Bromides. Journal of the American Chemical Society, 125, 2890-2891.
https://doi.org/10.1021/ja0299708
[15]  Grossman, O. and Gelman, D. (2006) Novel Trans-Spanned Palladium Complexes as Efficient Catalysts in Mild and Amine-Free Cyanation of Aryl Bromides under Air. Organic Letters, 8, 1189-1191.
https://doi.org/10.1021/ol0601038
[16]  Choi, E., Lee, C., Na, Y. and Chang, S. (2002) [RuCl2(p-cymene)]2 on Carbon: An Efficient, Slective, Reusable, and Environmentally Versatile Heterogeneous Catalyst. Organic Letters, 4, 2369-2371.
https://doi.org/10.1021/ol0260977
[17]  Chandrasekhar, S. and Gopalaiah, K. (2003) Beckmann Reaction of Oximes Catalysed by Chloral: Mild and Neutral Procedures. Tetrahedron Letters, 44, 755-756.
https://doi.org/10.1016/S0040-4039(02)02644-8
[18]  Yamaguchi, K., Fujiwara, H., Ogasawara, Y., Kotani, M. and Mizuno, N.A. (2007) A Tungsten-Tin Mixed Hydroxide as an Efficient Heterogeneous Catalyst for Dehydration of Aldoximes to Nitriles. Angewandte Chemie International Edition, 46, 3922-3925.
https://doi.org/10.1002/anie.200605004
[19]  Ishihara, K., Furuya, Y. and Yamamoto, H. (2002) Rhenium(vii) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. Angewandte Chemie International Edition, 41, 2983-2985.
https://doi.org/10.1002/1521-3773(20020816)41:16<2983::AID-ANIE2983>3.0.CO;2-X
[20]  Maffioli, S.I., Marzorati, E. and Marazzi, A. (2005) Mild and Reversible Dehydration of Primary Amides with PdCl2 in Aqueous Acetonitrile. Organic Letters, 7, 5237-5239.
https://doi.org/10.1021/ol052100l
[21]  Enthaler, S. (2011) Straightforward Iron-Catalyzed Synthesis of Nitriles by Dehydration of Primary Amides. European Journal of Organic Chemistry, 4760-4763.
https://doi.org/10.1002/ejoc.201100754
[22]  Enthaler, S. and Inoue, S. (2012) An Efficient Zinc-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry—An Asian Journal, 7, 169-175.
https://doi.org/10.1002/asia.201100493
[23]  Boruah, M. and Konwar, D. (2002) AlCl36H2O/KI/H2O/CH3CN: A New Alternate System for Dehydration of Oximes and Amides in Hydrated Media. The Journal of Organic Chemistry, 67, 7138-7139.
https://doi.org/10.1021/jo020005+
[24]  Yamaguchi, K. and Mizuno, N. (2003) Efficient Heterogeneous Aerobic Oxidation of Amines by a Supported Ruthenium Catalyst. Angewandte Chemie International Edition, 42, 1480-1483.
https://doi.org/10.1002/anie.200250779
[25]  Nicolaou, K.C. and Mathison, C.J.N. (2005) Synthesis of Imides, N-Acyl Vinylogous Carbamates and Ureas, and Nitriles by Oxidation of Amides and Amines with Dess-Martin Periodinane. Angewandte Chemie International Edition, 44, 5992-5997.
https://doi.org/10.1002/anie.200501853
[26]  Chen, F.-E., Kuang, Y.-Y., Dai, H.-F., Lu, L. and Huo, M. (2003) A Selective and Mild Oxidation of Primary Amines to Nitriles with Trichloroisocyanuric Acid. Synthesis, 2629-2631.
https://doi.org/10.1055/s-2003-42431
[27]  Vaghei, R. and Veisi, G.H. (2009) Poly (N,N’-dichloro-N-ethylbenzene-1,3 disulfonamide) and N,N,N’,N’-Tetrachlorobenzene 1,3-disulfonamide as Novel Reagents for the Synthesis of N-Chloroamines, Nitriles and Aldehydes. Synthesis, 945-950.
https://doi.org/10.1055/s-0028-1087967
[28]  Chen, F.E.Y., Li, Y., Xu, M. and Jia, H.Q. (2002) Tetrabutylammonium Peroxydisulfate in Organic Synthesis; XIII.1 A Simple and Highly Efficient One-Pot Synthesis of Nitriles by Nickel-Catalyzed Oxidation of Primary Alcohols with Tetrabutylammonium Peroxydisulfate. Synthesis, 1804-1806.
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2002-33906
[29]  Brackman, W. and Smith, P.J. (1963) A New Synthesis of Nitriles. Recueil des Travaux Chimiques des PaysBas, 82, 757-762.
https://doi.org/10.1002/recl.19630820803
[30]  Parameswaran, K.N. and Friedman, O.M. (1965) Synthesis of Nitriles from Aldehydes. Chemistry & Industry, 988-989.
https://www.ncbi.nlm.nih.gov/pubmed/5842016
[31]  Bose, D.S. and Narsaiah, A.V. (1998) Efficient One Pot Synthesis of Nitriles from Aldehydes in Solid State using Peroxymonosulfate on Alumina. Tetrahedron Letters, 39, 6533-6534.
https://doi.org/10.1016/S0040-4039(98)01358-6
[32]  Erman, M.B., Snow, J.W. and Williams, M.J. (2000) A New Efficient Method for the Conversion of Aldehydes into Nitriles using Ammonia and Hydrogen Peroxide. Tetrahedron Letters, 41, 6749-6752.
https://doi.org/10.1016/S0040-4039(00)01168-0
[33]  Talukdar, S., Hsu, J.-L., Chou, T.-C. and Fang, J.-M. (2001) Direct Transformation of Aldehydes to Nitriles using Iodine in Ammonia Water. Tetrahedron Letters, 42, 1103-1105.
https://doi.org/10.1016/S0040-4039(00)02195-X
[34]  Bandgar, B.P. and Makone, S.S. (2006) Organic Reactions in Water: Transformation of Aldehydes to Nitriles using NBS under Mild Conditions. Synthetic Communications, 36, 1347-1352.
https://doi.org/10.1080/00397910500522009
[35]  Arote, N.D., Bhalerao, D.S. and Akamanchi, K.G. (2007) Direct Oxidative Conversion of Aldehydes to Nitriles using IBX in Aqueous Ammonia. Tetrahedron Letters, 48, 3651-3653.
https://doi.org/10.1016/j.tetlet.2007.03.137
[36]  Telvekar, V.N., Patel, K.N., Kundiakar, H.S. and Chaudhari, H.K. (2008) A Novel System for the Synthesis of Nitriles from Aldehydes using Aqueous Ammonia and Sodium Dichloroiodate. Tetrahedron Letters, 49, 2213-2215.
https://doi.org/10.1016/j.tetlet.2008.02.046
[37]  Reddy, M.B.M. and Pasha, M.A. (2010) Efficient and High-Yielding Protocol for the Synthesis of Nitriles from Aldehydes. Synthetic Communications, 40, 3384-3389.
https://doi.org/10.1080/00397910903419894
[38]  Gozum, V.P. and Mebane, R.C. (2013) Solvent-Free and Atom Efficient Conversion of Aldehydes into Nitriles. Green Chemistry Letters and Reviews, 6, 149.
https://doi.org/10.1080/17518253.2012.728633
[39]  Barahman, M. and Salman, S. (2005) An Efficient and Convenient KF/Al2O3 Mediated Synthesis of Nitriles from Aldehydes. Tetrahedron Letters, 46, 6923-6925.
https://doi.org/10.1016/j.tetlet.2005.08.007
[40]  Greenberg, A., Breneman, C.M. and Liebman, J.F. (2000) The Amide Linkage: Structural Significance in Chemistry Biochemistry and Material Science. Wiley, New York.
[41]  Kroschwitz, J.I. (1991) C. E. Mabermann in Encyclopedia of Chemical Technology. Vol. 1, Wiley, New York, 251.
[42]  Kroschwitz, J.I. (1991) D. Lipp in Encyclopedia of Chemical Technology. Vol. 1, Wiley, New York, 266.
[43]  Carey, J.S., Laffan, D., Thomson, C. and Williams, M.T. (2006) Analysis of the Reactions Used for the Preparation of Drug Candidate Molecules. Organic & Biomolecular Chemistry, 4, 2337-2347.
https://doi.org/10.1039/b602413k
[44]  Kroschwitz, J.I. (1991) Mabermann, C. E. in Encyclopedia of Chemical Technology. Vol. 1, Wiley, New York, 251.
[45]  Kroschwitz, J.I. (1991) R. Opsahl in Encyclopedia of Chemical Technology. Vol. 2, Wiley, New York, 346.
[46]  Wang, M.-X. (2005) Enantioselective Biotransformations of Nitriles in Organic Synthesis. Topics in Catalysis, 35, 117-135.
https://doi.org/10.1007/s11244-005-3817-1
[47]  Kumar, D. and Bhalla, T.C. (2005) Microbial Proteases in Peptide Synthesis: Approaches and Applications. Applied Microbiology and Biotechnology, 68, 726-736.
https://doi.org/10.1007/s00253-005-0094-7
[48]  Gawley, R.E. (1988) The Beckmann Reactions: Rearrangements, Elimination-Additions, Fragmentations, and Rearrangement-Cyclisations. Organic Reactions, 35, 1-247.
https://doi.org/10.1002/0471264180.or035.01
[49]  Izumi, Y., Sato, S. and Urabe, K. (1983) Vapor-Phase Beckmann Rearrangement of Cyclohexanone Oxime over Boria-Hydroxyapatite Catalyst. Chemistry Letters, 1649-1652.
https://doi.org/10.1246/cl.1983.1649
[50]  Shie, J. and Fang, J (2003) Direct Conversion of Aldehydes to Amides, Tetrazoles, and Triazines in Aqueous Media by One-Pot Tandem Reactions. The Journal of Organic Chemistry, 68, 1158-1160.
https://doi.org/10.1021/jo026407z
[51]  Owston, N.A., Parker, A.J. and Williams, J.M. (2007) Iridium-Catalyzed Conversion of Alcohols into Amides via Oximes. Organic Letters, 9, 73-75.
https://doi.org/10.1021/ol062549u
[52]  Ghosh, S.C., Ngiam, J.S.Y., Seayad, A.M., Tuan, D.T., Chai, C.L.L. and Chen, A. (2012) Coppee-Catalyzed Oxidative Amidation of Aldehydes with Amine Salt: Synthesis of Primary, Secondary, Tertiary Amides. The Journal of Organic Chemistry, 77, 8007-8015.
https://doi.org/10.1021/jo301252c
[53]  Ramon, R.S., Bosson, J., González, S.D., Marion, N. and Nolan, S.P. (2010) Au/Ag-Cocatalyzed Aldoximes to Amides Rearrangement under Solvent- and Acid-Free Conditions. The Journal of Organic Chemistry, 75, 1197-1202.
https://doi.org/10.1021/jo902461a
[54]  Ali, M.A. and Punniyamurthy, T. (2010) Palladium-Catalyzed One-Pot Conversion of Aldehydes to Amides. Advanced Synthesis & Catalysis, 352, 288-292.
https://doi.org/10.1002/adsc.200900799
[55]  Park, S., Choi, Y., Han, H., Yang, S.H. and Chang, S. (2003) Rh-Catalyzed One-Pot and Practical Transformation of Aldoximes to Amides. Chemical Communications, 1936-1937.
https://doi.org/10.1039/b305268k
[56]  Fujiwara, H., Ogasawara, Y., Yamaguchi, K. and Mizuno, N.A. (2007) A One-Pot Synthesis of Primary Amides from Aldoximes or Aldehydes in Water in the Presence of a Supported Rhodium Catalyst. Angewandte Chemie International Edition, 46, 5202-5205.
https://doi.org/10.1002/anie.200701273
[57]  Fujiwara, H., Ogasawara, Y., Kotani, M., Yamaguchi, K. and Mizuno, N. (2008) A Supported Rhodium Hydroxide Catalyst: Preparation, Characterization, and Scope of the Synthesis of Primary Amides from Aldoximes or Aldehydes. Chemistry—An Asian Journal, 3, 1715-1721.
https://doi.org/10.1002/asia.200800067
[58]  Kim, M., Lee, J., Lee, H.-Y. and Chang, S. (2009) Significant Self-Acceleration Effects of Nitrile Additives in the Rhodium-Catalyzed Conversion of Aldoximes to Amides: A New Mechanistic Aspect. Advanced Synthesis & Catalysis, 351, 1807-1812.
https://doi.org/10.1002/adsc.200900251
[59]  Gnanamgari, D. and Crabtree, R.H. (2009) Terpyridine Ruthenium-Catalyzed One-Pot Conversion of Aldehydes into Amides. Organometallics, 28, 922-924.
https://doi.org/10.1021/om8010678
[60]  Hull, J.F., Hilton, S.T. and Crabtree, R.H. (2010) A Simple Ru Catalyst for the Conversion of Aldehydes or Oximes to Primary Amides. Inorganica Chimica Acta, 363, 1243-1245.
https://doi.org/10.1016/j.ica.2009.08.022
[61]  Chandrasekhar, S. and Gopalaiah, K. (2002) Beckmann Rearrangement of Ketoximes on Solid Metaboric Acid: A Simple and Effective Procedure. Tetrahedron Letters, 43, 2455-2457.
https://doi.org/10.1016/S0040-4039(02)00282-4
[62]  Wang, B., Gu, Y., Luo, C., Yang, T., Yang, L. and Suo, J. (2004) Sulfamic Acid as a Cost-Effective and Recyclable Catalyst for Liquid Beckmann Rearrangement, a Green Process to Produce Amides from Ketoximes without Waste. Tetrahedron Letters, 45, 3369-3372.
https://doi.org/10.1016/j.tetlet.2004.03.017
[63]  De Luca, L., Giacomelli, G. and Porcheddu, A. (2002) Beckmann Rearrangement of Oximes under Very Mild Conditions. The Journal of Organic Chemistry, 67, 6272-6274.
https://doi.org/10.1021/jo025960d
[64]  Antikumar, S. and Chandrasekhar, S. (2000) Improved Procedures for the Beckmann Rearrangement: The Reaction of Ketoxime Carbonates with Boron Trifluoride Etherate. Tetrahedron Letters, 41, 5427-5429.
https://doi.org/10.1016/S0040-4039(00)00875-3
[65]  Li, D., Shi, F., Guo, S. and Deng, Y. (2005) Highly Efficient Beckmann Rearrangement and Dehydration of Oximes. Tetrahedron Letters, 46, 671-674.
https://doi.org/10.1016/j.tetlet.2004.11.116
[66]  Sharghi, H. and Sarvari, M.H. (2002) A Direct Synthesis of Nitriles and Amides from Aldehydes using Dry or Wet Alumina in Solvent Free Conditions. Tetrahedron, 58, 10323-10328.
https://doi.org/10.1016/S0040-4020(02)01417-5
[67]  Khalafi-Nezhad, A. and Mohammadi, S. (2014) Chitosan Supported Ionic Liquid: A Recyclable Wet and Dry Catalyst for the Direct Conversion of Aldehydes into Nitriles and Amides under Mild Conditions. RSC Advances, 4, 13782-13787.
http://pubs.rsc.org/en/content/articlelanding/2014/ra/c3ra43440k
[68]  Mulla, S.A.R., Chavan, S.S., Pathan, M.Y., Inamdar, S.M. and Shaikh, T.M.Y. (2015) Ligand-, Base-, Co-Catalyst-Free Copper Fluorapatite (CuFAP) as a Versatile, Ecofriendly, Heterogeneous and Reusable Catalyst for an Efficient Homocoupling of Arylboronic Acid at Ambient Reaction Conditions. RSC Advances, 5, 24675-24680.
http://pubs.rsc.org/en/content/articlelanding/2015/ra/c4ra16760k
[69]  Mulla, S.A.R., Chavan, S.S., Pathan, M.Y., Inamdar, S.M. and Shaikh, T.M.Y. (2014) An Efficient Synthesis of O-Aryloxime Ethers by Copper Fluorapatite Catalyzed Cross-Coupling of Aryloximes with Arylboronic Acids. Tetrahedron Letters, 55, 5327-5332.
https://doi.org/10.1016/j.tetlet.2014.07.056
[70]  Mulla, S.A.R., Inamdar, S.M., Pathan, M.Y. and Chavan, S.S. (2012) Ligand Free, Highly Efficient Synthesis of Diaryl Ether over Copper Fluorapatite as Heterogeneous Reusable Catalyst. Tetrahedron Letters, 53, 1826-1829.
https://doi.org/10.1016/j.tetlet.2012.01.124
[71]  Mulla, S.A.R., Inamdar, S.M., Pathan, M.Y. and Chavan, S.S. (2012) Base Promoted Highly Efficient Copper Fluorapatite Catalyzed Coupling of Phenols with Arylboronic Acids under Mild and Ligand-Free Conditions. RSC Advances, 2, 12818-12823.
http://pubs.rsc.org/en/content/articlelanding/2012/ra/c2ra21850j
[72]  Mulla, S.A.R., Pathan, M.Y. and Chavan, S.S. (2013) A Novel and Efficient Synthesis of Azaarene-Substituted 3-Hydroxy-2-Oxindoles via sp3 C-H Functionalization of 2-Methyl Azaarenes and (2-azaaryl)methanes over a Heterogeneous, Reusable Silica-Supported Dodecatungstophosphoric Acid Catalyst. RSC Advances, 3, 20281-20286.
http://pubs.rsc.org/en/content/articlelanding/2013/ra/c3ra43515f
[73]  Mulla, S.A.R., Pathan, M.Y., Chavan, S.S., Gample, S. and Sarkar, P.D. (2014) Highly Efficient One-Pot Multi-Component Synthesis of A-aminophosphonates and Bis-aaminophosphonates Catalyzed by Heterogeneous Reusable Silica Supported Dodecatungstophosphoric Acid (DTP/SiO2) at Ambient Temperature and Their Antitubercular Evaluation against Mycobactrium Tuberculosis. RSC Advances, 4, 7666-7672.
http://pubs.rsc.org/en/content/articlehtml/2013/ra/c3ra45853a
[74]  Choudary, B.M., Sridhar, C., Kantam, M.L., Venkanna, G.T. and Sreedhar, B. (2005) Design and Evolution of Copper Apatite Catalysts for N-Arylation of Heterocycles with Chloro- and Fluoroarenes. Journal of the American Chemical Society, 127, 9948-9949.
https://doi.org/10.1021/ja0436594
[75]  Sharghi, H. and Sarvari, M.H. (2003) Graphite as an Efficient Catalyst for One-Step Conversion of Aldehydes into Nitriles in Dry Media. Synthesis, 2, 243-246.
https://doi.org/10.1055/s-2003-36830

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133