全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Generic Polycarbonate Based Microfluidic Tool to Study Crystal Nucleation in Microdroplets

DOI: 10.4236/jcpt.2018.81001, PP. 1-17

Keywords: Microfluidics, Polycarbonate, Crystallization, Electrolyte Solution, Organic Melt

Full-Text   Cite this paper   Add to My Lib

Abstract:

Crystal nucleation is important to control the product properties in industrial crystallization processes. To investigate crystallization phenomena, methods which rely on microscopic volumes have gained relevance over the last decade. Microfluidic devices are suitable for carrying out crystallization experiments based on a large set of individual droplets in the nanoliter range. In this work, we propose a simple method to manufacture such devices from polycarbonate as an alternative to conventional chips made of poly (dimethylsiloxane). The microfluidic device consists of two main functional parts: A T-junction for droplet generation and a section for storage and observation of up to 400 individual droplets. Using these manufactured devices, it is easy to produce and store highly monodisperse droplets of substances that require either a hydrophilic or hydrophobic surface of the microchannel. Since crystal nucleation is a stochastic process which depends on the sample volume, a reproducible droplet volume is of great importance for crystallization experiments. The versatile applicability of the manufactured devices is demonstrated for substances which are used in different crystallization applications, for example, solution crystallization (aqueous potassium nitrate solution) and melt crystallization (ethylene glycol distearate). Finally, we demonstrate that the manufactured microfluidic devices in our experimental setup can be used to conduct crystal nucleation measurements. Based on these measurements we discuss our results with respect to state-of-the-art nucleation models.

References

[1]  Abramov, S., Ruppik, P. and Schuchmann, H. (2016) Crystallization in Emulsions: A Thermo-Optical Method to Determine Single Crystallization Events in Droplet Clusters. Processes, 4, 25.
https://doi.org/10.3390/pr4030025
[2]  McClements, D.J. (2012) Crystals and Crystallization in Oil-In-Water Emulsions: Implications for Emulsion-Based Delivery Systems. Advances in Colloid and Interface Science, 174, 1-30.
https://doi.org/10.1016/j.cis.2012.03.002
[3]  Gebauer, J. and Kind, M. (2015) Experimental Screening Method for Flash-Crystallization. Chemical Engineering Science, 133, 75-81.
https://doi.org/10.1016/j.ces.2014.12.034
[4]  Shi, H.-H., Xiao, Y., Ferguson, S., Huang, X., Wang, N. and Hao, H.-X. (2017) Progress of Crystallization in Microfluidic Devices. Lab on a Chip, 17, 2167-2185.
https://doi.org/10.1039/C6LC01225F
[5]  Chen, D.L., Gerdts, C.J. and Ismagilov, R.F. (2005) Using Microfluidics to Observe the Effect of Mixing on Nucleation of Protein Crystals. Journal of the American Chemical Society, 127, 9672-9673.
https://doi.org/10.1021/ja052279v
[6]  Shim, J.-U., Cristobal, G., Link, D.R., Thorsen, T. and Fraden, S. (2007) Using Microfluidics to Decouple Nucleation and Growth of Protein Crystals. Crystal Growth & Design, 7, 2192-2194.
https://doi.org/10.1021/cg700688f
[7]  Maeki, M., Teshima, Y., Yoshizuka, S., Yamaguchi, H., Yamashita, K. and Miyazaki, M. (2014) Controlling Protein Crystal Nucleation by Droplet-Based Microfluidics. Chemistry, 20, 1049-1056.
https://doi.org/10.1002/chem.201303270
[8]  Pham, N., Radajewski, D., Round, A., Brennich, M., Pernot, P., Biscans, B., Bonnete, F. and Teychene, S. (2017) Coupling High Throughput Microfluidics and Small-Angle X-Ray Scattering to Study Protein Crystallization from Solution. Analytical Chemistry, 89, 2282-2287.
https://doi.org/10.1021/acs.analchem.6b03492
[9]  Teychené, S. and Biscans, B. (2011) Microfluidic Device for the Crystallization of Organic Molecules in Organic Solvents. Crystal Growth & Design, 11, 4810-4818.
https://doi.org/10.1021/cg2004535
[10]  Maeki, M., Yamaguchi, H., Tokeshi, M. and Miyazaki, M. (2016) Microfluidic Approaches for Protein Crystal Structure Analysis. Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry, 32, 3-9.
https://doi.org/10.2116/analsci.32.3
[11]  Teychené, S. and Biscans, B. (2012) Crystal Nucleation in a Droplet Based Microfluidic Crystallizer. Chemical Engineering Science, 77, 242–248.
https://doi.org/10.1016/j.ces.2012.01.036
[12]  Gerdts, C.J., Elliott, M., Lovell, S., Mixon, M.B., Napuli, A.J., Staker, B.L., Nollert, P. and Stewart, L. (2008) The Plug-Based Nanovolume Microcapillary Protein Crystallization System (MPCS). Acta Crystallographica. Section D, Biological Crystallography, 64, 1116-1122.
https://doi.org/10.1107/S0907444908028060
[13]  Dombrowski, R.D., Litster, J.D., Wagner, N.J. and He, Y. (2007) Crystallization of Alpha-Lactose Monohydrate in a Drop-Based Microfluidic Crystallizer. Chemical Engineering Science, 62, 4802-4810.
https://doi.org/10.1016/j.ces.2007.05.033
[14]  Laval, P., Salmon, J.-B. and Joanicot, M. (2007) A Microfluidic Device for Investigating Crystal Nucleation Kinetics. Journal of Crystal Growth, 303, 622-628.
https://doi.org/10.1016/j.jcrysgro.2006.12.044
[15]  Lu, J., Litster, J.D. and Nagy, Z.K. (2015) Nucleation Studies of Active Pharmaceutical Ingredients in an Air-Segmented Microfluidic Drop-Based Crystallizer. Crystal Growth & Design, 15, 3645-3651.
https://doi.org/10.1021/acs.cgd.5b00150
[16]  Vitry, Y., Teychené, S., Charton, S., Lamadie, F. and Biscans, B. (2015) Investigation of a Microfluidic Approach to Study Very High Nucleation Rates Involved in Precipitation Processes. Chemical Engineering Science, 133, 54-61.
https://doi.org/10.1016/j.ces.2015.01.062
[17]  Kashchiev, D. (2000) Nucleation: Basic Theory with Applications. Butterworth Heinemann, Oxford, Boston.
[18]  Brandel, C., Ter, H. and Joop, H. (2015) Measuring Induction Times and Crystal Nucleation Rates. Faraday Discussions, 179, 199-214.
https://doi.org/10.1039/C4FD00230J
[19]  Jiang, S., Ter, H. and Joop, H. (2011) Crystal Nucleation Rates from Probability Distributions of Induction Times. Crystal Growth & Design, 11, 256-261.
https://doi.org/10.1021/cg101213q
[20]  Jankowski, P., Ogonczyk, D., Kosinski, A., Lisowski, W. and Garstecki, P. (2011) Hydrophobic Modification of Polycarbonate for Reproducible and Stable Formation of Biocompatible Microparticles. Lab on a Chip, 11, 748-752.
https://doi.org/10.1039/C0LC00360C
[21]  Bico, J. and Quere, D. (2002) Self-Propelling Slugs. Journal of Fluid Mechanics, 467, 101-127.
https://doi.org/10.1017/S002211200200126X
[22]  Bico, J. and Quere, D. (2002) Rise of Liquids and Bubbles in Angular Capillary Tubes. Journal of Colloid and Interface Science, 247, 162-166.
https://doi.org/10.1006/jcis.2001.8106
[23]  Whitesides, G.M. (2006) The Origins and the Future of Microfluidics. Nature, 442, 368-373.
https://doi.org/10.1038/nature05058
[24]  Becker, H. (2002) Polymer Microfluidic Devices. Talanta, 56, 267-287.
https://doi.org/10.1016/S0039-9140(01)00594-X
[25]  Sia, S.K. and Whitesides, G.M. (2003) Microfluidic Devices Fabricated in Poly (Dimethylsiloxane) for Biological Studies. Electrophoresis, 24, 3563-3576.
https://doi.org/10.1002/elps.200305584
[26]  McDonald, J.C. and Whitesides, G.M. (2002) Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Accounts of Chemical Research, 35, 491-499.
https://doi.org/10.1021/ar010110q
[27]  Lo, R. (2013) Application of Microfluidics in Chemical Engineering. Journal of Chemical Engineering and Process Technology, 1002-1005.
[28]  Lee, J.N., Park, C. and Whitesides, G.M. (2003) Solvent Compatibility of Poly (dimethylsiloxane)-Based Microfluidic Devices. Analytical Chemistry, 75, 6544-6554.
https://doi.org/10.1021/ac0346712
[29]  Dangla, R., Gallaire, F. and Baroud, C.N. (2010) Microchannel Deformations Due to Solvent-Induced PDMS Swelling. Lab on a Chip, 10, 2972-2978.
https://doi.org/10.1039/c003504a
[30]  Wang, Y., He, Q., Dong, Y. and Chen, H. (2010) In-Channel Modification of Biosensor Electrodes Integrated on a Polycarbonate Microfluidic Chip for Micro Flow-Injection Amperometric Determination of Glucose. Sensors and Actuators B: Chemical, 145, 553-560.
https://doi.org/10.1016/j.snb.2009.11.068
[31]  Witek, M.A., Hupert, M.L., Park, D.S.-W., Fears, K., Murphy, M.C. and Soper, S.A. (2008) 96-Well Polycarbonate-Based Microfluidic Titer Plate for High-Throughput Purification of DNA and RNA. Analytical Chemistry, 80, 3483-3491.
https://doi.org/10.1021/ac8002352
[32]  Ogonczyk, D., Wegrzyn, J., Jankowski, P., Dabrowski, B. and Garstecki, P. (2010) Bonding of Microfluidic Devices Fabricated in Polycarbonate. Lab on a Chip, 10, 1324-1327.
https://doi.org/10.1039/b924439e
[33]  Qi, H., Chen, T., Yao, L. and Zuo, T. (2009) Micromachining of Microchannel on the Polycarbonate Substrate with CO2 Laser Direct-Writing Ablation. Optics and Lasers in Engineering, 47, 594-598.
https://doi.org/10.1016/j.optlaseng.2008.09.004
[34]  Derzsi, L., Jankowski, P., Lisowski, W. and Garstecki, P. (2011) Hydrophilic Polycarbonate for Generation of Oil in Water Emulsions in Microfluidic Devices. Lab on a Chip, 11, 1151-1156.
https://doi.org/10.1039/c0lc00438c
[35]  Lee, E.-S. (2000) Machining Characteristics of the Electropolishing of Stainless Steel (STS316L). The International Journal of Advanced Manufacturing Technology, 16, 591-599.
https://doi.org/10.1007/s001700070049
[36]  Musterd, M., van Steijn, V., Kleijn, C.R. and Kreutzer, M.T. (2015) Calculating the Volume of Elongated Bubbles and Droplets in Microchannels from a Top View Image. RSC Advances, 5, 16042-16049.
https://doi.org/10.1039/C4RA15163A
[37]  Kaiser, R. (2009) Flash-Kristallisation. Ein neues Verfahren zur Produktgestaltung kristalliner Güter. PhD Dissertation, Technische Universitat Karlsruhe, Karlsruhe.
[38]  Turnbull, D. (1952) Kinetics of Solidification of Supercooled Liquid Mercury Droplets. Journal of Chemical Physics, 20, 411.
https://doi.org/10.1063/1.1700435
[39]  Sear, R.P. (2014) Quantitative Studies of Crystal Nucleation at Constant Supersaturation: Experimental Data and Models. CrystEngComm, 16, 6506-6522.
https://doi.org/10.1039/C4CE00344F
[40]  Pound, G.M. and La Mer, V.K. (1952) Kinetics of Crystalline Nucleus Formation in Supercooled Liquid Tin. Journal of the American Chemical Society, 74, 2323-2332.
https://doi.org/10.1021/ja01129a044

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133