Assembly of Covalently Inorganic-Organic Hybrid Molecular Framework Based on Porphyrin and Phthalocyanine Derivatives—Sensitizer for Dye Sensitized Solar Cells
The research on sensitizer for dye sensitized solar cells based on (metallo)porphyrin/phthalocyanine materials were reviewed, and experimental design and assembly method were advised. Latest progress and research status of sensitizer dyes based on metalloporphyrins applied in dye sensitized solar cells was summarized. The preparation and construction of sensitizer electrodes and dye sensitized solar cells based on metal organic frameworks (MOFs) of (metallo)porphyrin/phthalocyanine were projected.
Tsuda, A. and Osuka, A. (2001) Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared. Science, 293, 79-82.
https://doi.org/10.1126/science.1059552
[3]
Yamaguchi, T., Ishii, N., Tashiro, K. and Aida, T. (2003) Supramolecular Peapods Composed of a Metalloporphyrin Nanotube and Fullerenes. Journal of the American Chemical Society, 125, 13934-13935. https://doi.org/10.1021/ja038178j
[4]
Yella, A., Lee, H.-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, Md.K., Diau, E.W.-G., Yeh, C.-Y., Zakeeruddin, S.M. and Grätzel, M. (2011) Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 334, 629-634. https://doi.org/10.1126/science.1209688
[5]
Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, Md.K. and Grätzel, M. (2014) Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nature Chemistry, 6, 242-247.
https://doi.org/10.1038/nchem.1861
[6]
Liu, W., Huang, X., Cheng, M.-J., Nielsen, R.J., Goddard III, W.A. and Groves, J.T. (2012) Oxidative Aliphatic C-H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin. Science, 337, 1322-1325.
https://doi.org/10.1126/science.1222327
[7]
Rossi, F., Bedogni, E., Bigi, F., Rimoldi, T., Cristofolini, L., Pinelli, S., Alinovi, R., Negri, M., Dhanabalan, S.C., Attolini, G., Fabbri, F., Goldoni, M., Mutti, A., Benecchi, G., Ghetti, C., Iannotta, S. and Salviati, G. (2015) Porphyrin Conjugated SiC/SiOx Nanowires for X-Ray-Excited Photodynamic Therapy. Scientific Reports, 5, 7606. https://doi.org/10.1038/srep07606
[8]
Sedghi, G., García-Suárez, V.M., Esdaile, L.J., Anderson, H.L., Lambert, C.J., Martín, S., Bethell, D., Higgins, S.J., Elliott, M., Bennett, N., Macdonald, J.E. and Nichols, R.J. (2011) Long-Range Electron Tunnelling in Oligo-Porphyrin Molecular Wires. Nature Nanotechnology, 6517-6523. https://doi.org/10.1038/nnano.2011.111
[9]
Guo, M., Dong, H., Li, J., Cheng, B., Huang, Y.-Q., Feng, Y.-Q. and Lei, A. (2012) Spectroscopic Observation of Iodosylarene Metalloporphyrin Adducts and Manganese(V)-Oxo Porphyrin Species in a Cytochrome P450 Analogue. Nature Communications, 3, 1190. https://doi.org/10.1038/ncomms2196
[10]
O’Sullivan, M.C., Sprafke, J.K., Kondratuk, D.V., Rinfray, C., Claridge, T.D.W., Saywell, A., Blunt, M.O., O’Shea, J.N., Beton, P.H., Malfois, M. and Anderson, H.L. (2011) Vernier Templating and Synthesis of a 12-Porphyrin Nano-Ring. Nature, 469, 72-75. https://doi.org/10.1038/nature09683
[11]
Lin, S., Diercks, C.S., Zhang, Y.-B., Kornienko, N., Nichols, E.M., Zhao, Y., Paris, A.R., Kim, D., Yang, P., Yaghi, O.M. and Chang, C.J. (2015) Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water. Science, 349, 1208-1213. https://doi.org/10.1126/science.aac8343
[12]
Wu, Y., Chen, L., Yu, J., Tong, S. and Yan, Y. (2013) Synthesis and Spectroscopic Characterization of Meso-Tetra (Schiff-Base Substituted Phenyl) Porphyrins and Their Zinc Complexes. Dyes and Pigments, 97, 423-428.
https://doi.org/10.1016/j.dyepig.2012.12.032
[13]
Wu, Y.H., et al. (2014) Schiff Base Bridged Biporphyrin: Synthesis, Characterization and Spectral Properties. Inorganic Chemistry Communications, 45, 10-14.
https://doi.org/10.1016/j.inoche.2014.03.017
[14]
Zheng, G.D. (1996) The Reaction Mechanism of Alkyl Halides with Carbon Dioxide Catalyzed by 5,10,15,20-Tetraphenyl Porphyrin Cobalt (CoTPP). Electrochimica Acta, 41, 177-182. https://doi.org/10.1016/0013-4686(95)00279-N
[15]
Tsuda, A. and Osuka, A. (2001) Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared. Scince, 293, 79-82.
https://doi.org/10.1126/science.1059552
[16]
Yang, J.-W., Zhang, J., Yan, Y., Huang, X.-C. and Tong, S.-L. (2010) A Coordination Polymer of Manganese (III) Porphyrinate with Right-Handed Helicity and Opticity. Solid State Sciences, 12, 1242-1247.
https://doi.org/10.1016/j.solidstatesciences.2010.03.003
[17]
Wang, S., Liu, X.Y. and Gu, Y.Z. (2016) Excellent Photoelectric Properties and Charge Dynamics of Two Types of Bulk Heterojunction Solar Cells. Materials Letters, 166, 251-254. https://doi.org/10.1016/j.matlet.2015.12.085
[18]
Urbani, M., Graätzel, M., Nazeeruddin, M.K. and Torres, T. (2014) Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chemical Reviews, 114, 12330-12396.
[19]
Kumar, C.V., Cabau, L., Koukaras, E.N., Sharma, A., Sharma, G.D. and Palomares, A.E. (2015) -π-D-π-A Based Porphyrin for Solution Processed Small Molecule Bulk Heterojunction Solar Cells. Journal of Materials Chemistry A, 3, 16287-16301.
https://doi.org/10.1039/C5TA03463A
[20]
Son, H.-J., Jin, S., Patwardhan, S., Wezenberg, S.J., Jeong, N.C., So, M., Wilmer, C.E., Sarjeant, A.A., Schatz, G.C., Snurr, R.Q., Farha, O.K., Wiederrecht, G.P. and Hupp, J.T. (2013) Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal-Organic Frameworks. Journal of the American Chemical Society, 135, 862-869. https://doi.org/10.1021/ja310596a
[21]
Zervaki, G.E., Tsaka, V., Vatikioti, A., Georgakaki, I., Nikolaou, V., Sharma, G.D. and Coutsolelos, A.G. (2015) A Triazine di(carboxy)porphyrin Dyad versus a Triazine di(carboxy)porphyrin Triad for Sensitizers in DSSCs. Dalton Transactions, 44, 13550-13564. https://doi.org/10.1039/C5DT01141H
[22]
Zegkinoglou, I., Ragoussi, M.-E., Pemmaraju, C.D., Johnson, P.S., Pickup, D.F., Ortega, J.E., Prendergast, D., Torre, G. and Himpsel, F.J. (2013) Spectroscopy of Donor-π-Acceptor Porphyrins for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 117, 13357-13364. https://doi.org/10.1021/jp402590u
[23]
Song, H., Kong, I., Ko, I., Kang, J., Kim, Y.J., Kweon, J.U., Cha, Y., Kim, E., Jeon, T.S. and Choi, E.-Y. (2016) A Study of the CO2/CO/CH4 Adsorption Ability of Porphyrin Paddle-Wheel Frameworks (PPFs). Polymer Bulletin, 73, 2593-2603.
https://doi.org/10.1007/s00289-016-1690-7
[24]
Neti, V.S.P.K., Wu, X., Deng, S. and Echegoyen, L. (2013) Selective CO2 Capture in an Imine Linked Porphyrin Porous Polymer. Polymer Chemistry, 4, 4566-4569.
https://doi.org/10.1039/c3py00798g
[25]
Hod, I., Sampson, M.D., Deria, P., Kubiak, C.P., Farha, O.K. and Hupp, J.T. (2015) Fe-Porphyrin-Based Metal-Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2. ACS Catalysis, 5, 6302-6309. https://doi.org/10.1021/acscatal.5b01767
[26]
Kornienko, N., Zhao, Y., Kley, C.S., Zhu, C., Kim, D., Lin, S., Chang, C.J., Yaghi, O.M. and Yang, P. (2015) Metal-Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide. Journal of the American Chemical Society, 137, 14129-14135. https://doi.org/10.1021/jacs.5b08212
[27]
Feng, D., Chung, W.-C., Wei, Z., Gu, Z.-Y., Jiang, H.-L., Chen, Y.-P., Darensbourg, D.J. and Zhou, H.-C. (2013) Construction of Ultrastable Porphyrin Zr Metal-Organic Frameworks through Linker Elimination. Journal of the American Chemical Society, 135, 17105-17110. https://doi.org/10.1021/ja408084j
[28]
Feng, D., Gu, Z.-Y., Li, J.-R., Jiang, H.-L., Wei, Z. and Zhou, H.-C. (2012) Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angewandte Chemie International Edition, 51, 10307-10310. https://doi.org/10.1002/anie.201204475
[29]
Wang, X.-S., Chrzanowski, M., Yuan, D., Sweeting, B.S. and Ma, S. (2014) Covalent Heme Framework as a Highly Active Heterogeneous Biomimetic Oxidation Catalyst. Chemistry of Materials, 26, 1639-1644. https://doi.org/10.1021/cm403860t
[30]
Yao, B., Li, C., Ma, J. and Shi, G. (2015) Porphyrin-Based Graphene Oxide Frameworks with Ultra-Large d-Spacings for the Electrocatalyzation of Oxygen Reduction Reaction. Physical Chemistry Chemical Physics, 17, 19538-19545.
https://doi.org/10.1039/C5CP02853A
[31]
Ma, W., Yu, P., Ohsaka, T. and Mao, L. (2015) An Efficient Electrocatalyst for Oxygen Reduction Reaction Derived from a Co-Porphyrin-Based Covalent Organic Framework. Electrochemistry Communications, 52, 53-57.
https://doi.org/10.1016/j.elecom.2015.01.021
[32]
Xie, M.-H., Yang, X.-L., Zou, C. and Wu, C.-D. (2011) A SnIV Porphyrin-Based Metal Organic Framework for the Selective Photo-Oxygenation of Phenol and Sulfides. Inorganic Chemistry, 50, 5318-5320. https://doi.org/10.1021/ic200295h
[33]
Fateeva, A., Chater, P.A., Ireland, C.P., Tahir, A.A., Khimyak, Y.Z., Wiper, P.V., Darwent, J.R. and Rosseinsky, M.J. (2012) A Water-Stable Porphyrin-Based Metal-Organic Framework Active for Visible-Light Photocatalysis. Angewandte Chemie International Edition, 51, 7440-7444. https://doi.org/10.1002/anie.201202471
[34]
Johnson, J.A., Luo, J., Zhang, X., Chen, Y.-S., Morton, M.D., Echeverría, E., Torres, F.E. and Zhang, J. (2015) Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal-Organic Frameworks. ACS Catalysis, 5, 5283-5291.
https://doi.org/10.1021/acscatal.5b00941
[35]
Ma, H., Ren, H., Meng, S., Sun, F. and Zhu, G. (2013) Novel Porphyrinic Porous Organic Frameworks for High Performance Separation of Small Hydrocarbons. Scientific Reports, 3, 2611. https://doi.org/10.1038/srep02611
[36]
Pereira, C.F., Simoes, M.M.Q., Tome, J.P.C. and Paz, F.A.A. (2016) Porphyrin-Based Metal-Organic Frameworks as Heterogeneous Catalysts in Oxidation Reactions. Molecules, 21, 1348. https://doi.org/10.3390/molecules21101348
[37]
Goldberg, I. (2005) Crystal Engineering of Porphyrin Framework Solids. Chemical Communications, 2005, 1243-1254. https://doi.org/10.1039/b416425c
[38]
Kandambeth, S., Shinde, D.B., Panda, M.K., Lukose, B., Heine, T. and Banerjeea, R. (2013) Enhancement of Chemical Stability and Crystallinity in Porphyrin Containing Covalent Organic Frameworks using Intra-Molecular Hydrogen Bonding. Angewandte Chemie, 52, 13052-13056. https://doi.org/10.1002/anie.201306775
[39]
Zheng, G.D., Yan, Y., Gao, S., Tong, S.L. and Zhen, K.J. (1996) The Reaction Mechanism of Alkyl Halides with Carbon Dioxide Catalyzed by 5, 10, 15, 20-tetraphenyl Porphyrin Cobalt (CoTPP). Electrochemica Acta, 41, 177-182.
https://doi.org/10.1016/0013-4686(95)00279-N
[40]
Yan, Y., Xiao, F.-S., Zheng, G., Zhen, K. and Fang, C. (2000) Selective Catalytic Oxidation of Naphthol to 2-hydroxyl-1,4-naphthoquinone by Hydrogen Peroxide over Metalloporphyrin Catalysts. Journal of Molecular Catalysis A: Chemical, 157, 65-72. https://doi.org/10.1016/S1381-1169(99)00440-9
[41]
Yan, Y., Kang, E.-H., Yang, K.-E., Tong, S.-L., Fang, C.-G., Liu, S.-J. and Xiao, F.-S. (2004) High Activity in Selective Catalytic Oxidation of Naphthol to 2-hydroxy-1,4-naphthoquinone by Molecular Oxygen under Air Pressure over Recycled Iron Porphyrin Catalysts. Catalysis Communications, 5, 387-390.
https://doi.org/10.1016/j.catcom.2004.05.003