全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multi-Physics Numerical Simulation of Thermoelectric Devices

DOI: 10.4236/jectc.2017.74010, PP. 123-135

Keywords: Thermoelectric Devices, Multi-Leg Devices, Bi2Te3, Sb2Te3, COMSOL, Fi-nite Element Simulation, Voltage Sensitivity, Temperature Sensitivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

To optimize the performance of a thermoelectric device for a specific application, the device should be uniquely designed for the application. Achieving an optimum design requires accurate measurements and credible analysis to evaluate the performance of the device and its relationship with the device parameters. To do that, we designed, fabricated, and tested four devices based on Bi2Te3 and Sb2Te3. To evaluate the accuracy of our analysis, experimental measurements were compared with the numerical simulation performed using COMSOLTM. The two sets of results were found to be in full agreement. This is a proof of the accuracy of our experimental measurements and the credibility of our simulation. The study shows that testing or simulating the devices without heat sink will lead to skewed results. This is because the junction will not hold its temperatures value, but will, instead, automatically change its value to the direction of thermal equilibrium. The study shows also that there is no reciprocity between the input and the output characteristics of the devices. Therefore, a device optimized for cooling and heating may not be automatically optimized for energy harvesting. For heating and cooling, temperature sensitivity should be optimized; while for energy harvesting, voltage sensitivity should be optimized. Using heat sink, our devices achieved a voltage sensitivity of 187.77 μV/K and a temperature sensitivity of 6.12 K/mV.

References

[1]  Abdel-Motaleb, I. and Qadri, S.M. (2017) Fabrication and Characterization of PLD-Grown Bismuth Telluride (Bi2Te3) and Antimony Telluride (Sb2Te3). Thermoelectric Devices. Journal of Electronics Cooling and Thermal Control, 7, 63-77.
https://doi.org/10.4236/jectc.2017.73006
[2]  Abdel-Motaleb, I. and Qadri, S.M. (2017) Thermoelectric Devices: Principles and Future Trends. arXiv.org.
https://arxiv.org/abs/1704.07742
[3]  Tritt, T.M. (2002) Thermoelectric Materials: Principles, Structure, Properties, and Applications. Encyclopedia of Materials: Science and Technology, 2nd Edition, 1-11.
https://doi.org/10.1016/B0-08-043152-6/01822-2
[4]  Willfahart, A. (2014) Screen Printed Thermoelectric Devices. Link äping University Electronic Press, Norrk äping.
https://doi.org/10.3384/lic.diva-106006
[5]  Trinidad, P.M.P. and Carbajal, G. (2015) Potential Use of Thermoelectric Generator Device for Air Conditioning System. Proceedings of the 13th Latin American and Caribbean Conference for Engineering and Technology, Santo Domingo, 29-31 July 2015.
[6]  Weerasinghe, R. and Hughes, T. (2017) Numerical and Experimental Investigation of Thermoelectric Cooling in Down-Hole Measuring Tools: A Case Study. Case Studies in Thermal Engineering, 10, 44-53.
http://www.elsevier.com/locate/csite
[7]  LeBlanc, S., Yee, S.K., Scullin, M.L., Dames, C. and Goodson, K.E. (2014) Material and Manufacturing Cost 564 Considerations for Thermoelectric. Renewable and Sustainable Energy Reviews, 32, 313-327.
https://doi.org/10.1016/j.rser.2013.12.030
[8]  Chen, L.G., Meng, F.K. and Sun, F.R. (2016) Thermodynamic Analyses and Optimization for Thermoelectric Devices: The State of the Arts. Science China-Technological Sciences, 59, 442-455.
https://doi.org/10.1007/s11431-015-5970-5
[9]  Su, H., Zhou, F., Qi, H. and Li, J. (2017) Design for Thermoelectric Power Generation Using Subsurface Coal Fires. Energy, 140, 929-940.
https://doi.org/10.1016/j.energy.2017.09.029
[10]  Seetawan, T., Singsoog, K., Srichai, S, Thanachayanont, C., Amornkitbamrung, V. and Chindaprasirt, P. Thermoelectric Energy Conversion of p-Ca3Co4O9/n-CaMnO3 Module. Energy Procedia, 61, 1067-1070.
http://www.sciencedirect.com/
[11]  Ma, Q., Fang, H., and Zhang, M. (2017) Theoretical Analysis and Design Optimization of Thermoelectric Generator. Applied Thermal Engineering, 127, 758-764.
https://doi.org/10.1016/j.applthermaleng.2017.08.056
[12]  Cao, Q., Luan, W. and Wang, T. (2017) Performance Enhancement of Heat Pipes Assisted Thermoelectric Generator for Automobile Exhaust Heat Recovery. Applied Thermal Engineering, in Press.
https://doi.org/10.1016/j.applthermaleng.2017.09.134
[13]  Chung, D.-Y., Hogan T., Brazis P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C. and Kanatzidis, M.-G. (2000) CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications. Science, 287, 1024-1027.
https://doi.org/10.1126/science.287.5455.1024
[14]  Sharp J., Sales, B., Mandrus D. and Chakoumakos, B. (1999) Thermoelectric Properties of Tl2SnTe5 and Tl2GeTe5. Applied Physics Letters, 74, 3794.
https://doi.org/10.1063/1.124182
[15]  Dughaish, Z.H. (2002) Lead Telluride as a Thermoelectric Material for Thermoelectric Power Generation. Physica B: Condensed Matter, 322, 205-223.
https://doi.org/10.1016/S0921-4526(02)01187-0
[16]  Uher, C., Yang, J., Hu, S., Morelli, D.T. and Meisner, G.P. (1999) Transport Properties of Pure and Doped MNiSn, M = (Zr, Hf). Physical Review B, 59, 8615-8621.
https://doi.org/10.1103/PhysRevB.59.8615
[17]  Nolas, G.S., Cohn, J.L., Slack, G.A. and Schujman, S.B. (1998) Semiconducting Ge Clathrates: Promising Candidates for Thermoelectric Applications. Applied Physics Letters, 73, 178.
https://doi.org/10.1063/1.121747
[18]  Meng, J.F., Chandra Shekar, N.V., Badding, J.V. and Nolas, G.S. (2001) Threefold Enhancement of the Thermoelectric Figure of Merit for Pressure Tuned Sr8Ga16Ge30. Journal of Applied Physics, 89. 1730.
https://doi.org/10.1063/1.1334366
[19]  Snyder, G.J. and Toberer, E.S. (2008) Complex Thermoelectric Materials. Nature Materials, 7, 105-114.
https://doi.org/10.1038/nmat2090
[20]  Levin, E.M., Bud’ko, S.L. and Schmidt-Rohr, K. (2012) Enhancement of Thermopower of TAGS-85 High-Performance Thermoelectric Material by Doping with the Rare Earth Dy. Advanced Functional Materials, 22, 2766-2774.
https://doi.org/10.1002/adfm.201103049
[21]  Shaik, M. and Abdel-Motaleb, I.M. (2013) Effect of Substrate Temperature on PLD Grown Thin Film Bi2Te3 and Sb2Te3. IEEE EIT Conference Proceedings, Rapid City, 9-11 May 2013.
[22]  Shaik, M. and Abdel-Motaleb, I.M. (2013) Investigation of the Electrical Properties of PLD-Grown Bi2Te3and Sb2Te3. IEEE EIT Conference Proceedings, Rapid City, 9-11 May 2013.
[23]  Lim, S.K., Kim, M.Y. and Oh, T.S. (2009) Thermoelectric Properties of the Bismuth-Antimony-Telluride and the Antimony-Telluride Films Processed by Electrode Position for Micro-Device Applications. Thin Solid Films, 517, 4199-4203.
https://doi.org/10.1016/j.tsf.2009.02.005
[24]  Kimi, M.-Y. and Oh, T.-S. (2011) Processing and Thermoelectric Performance Characterization of Thin-Film Devices Consisting of Electrodeposited Bismuth Telluride and Antimony Telluride Thin-Film Legs. Journal of Electronic Materials, 40, 759-764.
https://doi.org/10.1007/s11664-011-1562-8
[25]  Foucaran, A., Sackda, A., Giani, A., Pascal-Delannoy, F. and Boyer, A. (1998) Flash Evaporated Layers of (Bi2Te3-Bi2Se3)(N) and (Bi2Te3-Bi2Se3)(P). Materials Science and Engineering: B, 52, 154-161.
https://doi.org/10.1016/S0921-5107(98)00108-1
[26]  Carmo, J.P., Goncalves, L.M., Wolffenbuttel, R.F. and Correia, J.H. (2010) A Planar Thermoelectric Power Generator for Integration in Wearable Microsystems. Sensors and Actuators A: Physical, 161, 199-204.
https://repositorium.sdum.uminho.pt/bitstream/1822/11980/1/repositorium_02.pdf
https://doi.org/10.1016/j.sna.2010.05.010
[27]  Bailini, A., Donati, F., Zamboni, M., Russo, V., Passoni, M., Casari, C.S., Li Bassi, A. and Bottani, C.E. (2007) Pulsed Laser Deposition of Bi2Te3 Thermoelectric Films. Applied Surface Science, 254, 1249-1254.
https://doi.org/10.1016/j.apsusc.2007.09.039
[28]  Mitrani, D., Salazar, J., Turó, A., García, M.J. and Chávez, J.A. (2007) Lumped and Distributed Parameter SPICE Models of TE Devices Considering Temperature Dependent Material Properties. 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC), Budapest, Hungary, September 2007, 17-19.
https://arxiv.org/abs/0801.1037
[29]  Chen, M., Rosendahl, L.A., Condra, T.J. and Pedersen, J.K. (2009) Numerical Modeling of Thermoelectric Generators with Varying Material Properties in a Circuit Simulator. IEEE Transactions on Energy Conversion, 24, 112-124.
https://doi.org/10.1109/TEC.2008.2005310
[30]  Pipe, K. (2004) Bipolar Thermoelectric Devices. PhD Dissertation, MIT, Cambridge, MA.
https://dspace.mit.edu/handle/1721.1/16614
[31]  Ortega, P. and Olivares-Robles, M. (2017) Analysis of a Hybrid Thermoelectric Microcooler: Thomson Heat and Geometric Optimization. Entropy, 19, 312.
http://www.mdpi.com/1099-4300/19/7/312
https://doi.org/10.3390/e19070312
[32]  Headings, L.M. (2011) Modeling and Development of Thermoelectric Device Technologies for Novel Mechanical Systems. PhD Dissertation, Ohio State University, Columbus, OH.
https://search.proquest.com/docview/925791730?pq-origsite=gscholar
[33]  Bitschi, A. (2009) Modeling of Thermoelectric Devices for Electric Power Generation. Doctor of Science Dissertation, Swiss Federal Institute of Technology, Zurich, Diss. ETH No. 18441.
[34]  Karami Lakeh, H.K., Abardeh, R.H. and Kaatuzian, H. (2015) Numerical Simulation of a Segmented Thermoelectric Generator. Energy and Power, 5, 1-9.
http://journal.sapub.org/ep
[35]  Yan, D., Dawson, F., Pugh, M. and El-Deib, A. (2014) Time Dependent Finite Volume Model of Thermoelectric Devices. IEEE Transaction on Industry Applications, 50, 600-608.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547766
[36]  Seetawan, T., Seetawan, U., Ratchasina, A., Srichaia, S., Singsoog, K., Namhongsa, W., Ruttanapun, C. and Siridejachai, S. (2012) Analysis of Thermoelectric Generator by Finite Element Method. Procedia Engineering, 32, 1006-1011.
http://www.sciencedirect.com/
[37]  Jaegle, M. (2008) Multiphysics Simulation of Thermoelectric Systems—Modeling of Peltier-Cooling and Thermoelectric Generation. COMSOL Conference, Hannover, 2008.
[38]  Antonova, E.E. and Looman, D.C. (2005) Finite Elements for Thermoelectric Device Analysis in ANSYS. 24th International Conference on Thermoelectrics, 19-23 June 2005, pp. 215-218.
[39]  COMSOL Multi-Physics.
https://www.comsol.com/
[40]  Zou, H., Rowe, D.M. and Williams, S.G.K. (2002) Peltier Effect in a Co-Evaporated (Sb2Te3)(P)-Bi2Te3(N) Thin Film Thermocouple. Thin Solid Films, 408, 270-274.
https://doi.org/10.1016/S0040-6090(02)00077-9

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133