全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Progress regarding the Use of Lactic Acid Bacteria as Live Delivery Vectors, Treatment of Diseases and Induction of Immune Responses in Different Host Species Focusing on Lactobacillus Species

DOI: 10.4236/wjv.2017.74004, PP. 43-75

Keywords: Lactobacilli, Probiotics, Lactic Acid, Live Delivery Vectors, Treatment, Immune Responses

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lactobacillus species are non-spore-forming, gram-positive bacteria and lactic acid producing bacteria (LAPB) that naturally inhabit the human and animal gastrointestinal and mouth organs. The aim of this review was to evaluate the new progress regarding the use of Lactobacillus species as live delivery vectors, prevention, and treatment of pathogenic and metabolic diseases. Lactobacillus strains of probiotics have been extensively studied and have confirmed that they can absolutely improve performance as live delivery vectors, a treatment option of various diseases such as: Hemorrhagic cecal coccidiosis in young poultry, hypertension, avian flu, obesity, diabetes, Derzsy’s disease or parvovirus infection, human immunodeficiency virus infections, irritable bowel syndrome, gastrointestinal disorders, Fungal infections, vaginal eubiosis, fish and shellfish species diseases. We give you an idea about that Lactobacillus species have been proficient in preventing and treating both disorders in animal models and some are used for clinical trials. We present the most current studies on the use of Lactobacillus strains that had an impact on an effective immune response to a specific antigen because a variety of antigens have been expressed. Therefore Lactobacillus strains can be considered as good candidates because of its potential for diseases treatment and vaccine development as heterologous protein secretion to date.

References

[1]  Robert, L. and Labat-Robert, J. (2017) Comments on the History of Medical-Biological Studies of Aging, the Birth of Scientific Gerontology. Current Research in Translational Medicine, 65, 44-47.
[2]  Nguyen, T.T., Nguyen, H.M., Geiger, B., Mathiesen, G., Eijsink, V.G., Peterbauer, C.K., Haltrich, D. and Nguyen, T.H. (2015) Heterologous Expression of a Recombinant Lactobacillal Beta-Galactosidase in Lactobacillus Plantarum: Effect of Different Parameters on the Sakacin P-Based Expression System. Microbial Cell Factories, 14, 30.
https://doi.org/10.1186/s12934-015-0214-8
[3]  Bothe, M.K., Maathuis, A.J.H., Bellmann, S., van der Vossen, J., Berressem, D., Koehler, A., Schwejda-Guettes, S., Gaigg, B., Kuchinka-Koch, A. and Stover, J.F. (2017) Dose-Dependent Prebiotic Effect of Lactulose in a Computer-Controlled In Vitro Model of the Human Large Intestine. Nutrients, 9.
https://doi.org/10.3390/nu9070767
[4]  Sugahara, H., Yao, R., Odamaki, T. and Xiao, J.Z. (2017) Differences between Live and Heat-Killed Bifidobacteria in the Regulation of Immune Function and the Intestinal Environment. Beneficial Microbes, 8, 463-472.
https://doi.org/10.3920/BM2016.0158
[5]  Szatraj, K., Szczepankowska, A.K. and Chmielewska-Jeznach, M. (2017) Lactic Acid Bacteria-Promising Vaccine Vectors: Possibilities, Limitations, Doubts. Journal of Applied Microbiology, 123, 325-339.
https://doi.org/10.1111/jam.13446
[6]  Linares, D.M., Gomez, C., Renes, E., Fresno, J.M., Tornadijo, M.E., Ross, R.P. and Stanton, C. (2017) Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods. Frontiers in Microbiology, 8, 846.
https://doi.org/10.3389/fmicb.2017.00846
[7]  Melo, T.A., Dos Santos, T.F., Pereira, L.R., Passos, H.M., Rezende, R.P. and Romano, C.C. (2017) Functional Profile Evaluation of Lactobacillus Fermentum TCUESC01: A New Potential Probiotic Strain Isolated during Cocoa Fermentation. BioMed Research International, 2017, 5165916.
[8]  Odamaki, T., Kato, K., Sugahara, H., Xiao, J.Z., Abe, F. and Benno, Y. (2016) Effect of Probiotic Yoghurt on Animal-Based Diet-Induced Change in Gut Microbiota: An Open, Randomised, Parallel-Group Study. Beneficial Microbes, 7, 473-484.
https://doi.org/10.3920/BM2015.0173
[9]  Nuraida, L. (2015) A Review: Health Promoting Lactic Acid Bacteria in Traditional Indonesian Fermented Foods. Food Science and Human Wellness, 4, 47-55.
https://doi.org/10.1016/j.fshw.2015.06.001
[10]  Hadaegh, H., Seyyedain Ardabili, S.M., Tajabadi Ebrahimi, M., Chamani, M. and Azizi Nezhad, R. (2017) The Impact of Different Lactic Acid Bacteria Sourdoughs on the Quality Characteristics of Toast Bread. Journal of Food Quality, 2017, 1-11.
[11]  Reale, A., Di Renzo, T., Zotta, T., Preziuso, M., Boscaino, F., Ianniello, R., Storti, L.V., Tremonte, P. and Coppola, R. (2016) Effect of Respirative Cultures of Lactobacillus casei on Model Sourdough Fermentation. LWT - Food Science and Technology, 73, 622-629.
https://doi.org/10.1016/j.lwt.2016.06.065
[12]  Garcia-Mantrana, I., Yebra, M.J., Haros, M. and Monedero, V. (2016) Expression of Bifidobacterial Phytases in Lactobacillus casei and Their Application in a Food Model of Whole-Grain Sourdough Bread. International Journal of Food Microbiology, 216, 18-24.
https://doi.org/10.1016/j.ijfoodmicro.2015.09.003
[13]  Ventimiglia, G., Alfonzo, A., Galluzzo, P., Corona, O., Francesca, N., Caracappa, S., Moschetti, G. and Settanni, L. (2015) Codominance of Lactobacillus plantarum and Obligate Heterofermentative Lactic Acid Bacteria during Sourdough Fermentation. Food Microbiology, 51, 57-68.
https://doi.org/10.1016/j.fm.2015.04.011
[14]  Lee, A., Lee, Y.J., Yoo, H.J., Kim, M., Chang, Y., Lee, D.S. and Lee, J.H. (2017) Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. Paracasei, Bifidobacterium animalis ssp. Lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity. Nutrients, 9.
https://doi.org/10.3390/nu9060558
[15]  Min, M., Bunt, C.R., Mason, S.L., Bennett, G.N. and Hussain, M.A. (2017) Effect of Non-Dairy Food Matrices on the Survival of Probiotic Bacteria during Storage. Microorganisms, 5.
[16]  Redondo, N., Nova, E., Gheorghe, A., Diaz, L.E., Hernandez, A. and Marcos, A. (2017) Evaluation of Lactobacillus coryniformis CECT5711 Strain as a Coadjuvant in a Vaccination Process: A Randomised Clinical Trial in Healthy Adults. Nutrition & Metabolism, 14, 2.
https://doi.org/10.1186/s12986-016-0154-2
[17]  Nishida, S., Ishii, M., Nishiyama, Y., Abe, S., Ono, Y. and Sekimizu, K. (2017) Lactobacillus paraplantarum 11-1 Isolated from Rice Bran Pickles Activated Innate Immunity and Improved Survival in a Silkworm Bacterial Infection Model. Frontiers in Microbiology, 8.
[18]  Singh, R.K., Chang, H.W., Yan, D., Lee, K.M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T.H., et al. (2017) Influence of Diet on the Gut microbiome and Implications for Human Health. Journal of Translational Medicine, 15, 73.
[19]  Lim, F., Lim, S. and Ramasamy, K. (2017) Pediococcus Acidilactici LAB4 and Lactobacillus plantarum LAB12 Assimilate Cholesterol and Modulate ABCA1, CD36, NPC1L1 and SCARB1 in Vitro. Beneficial Microbes, 8, 97-109.
https://doi.org/10.3920/BM2016.0048
[20]  Lee, S., You, H.J., Kwon, B. and Ko, G. (2017) Complete Genome Sequence of Lactobacillus jensenii Strain SNUV360, a Probiotic for Treatment of Bacterial Vaginosis Isolated from the Vagina of a Healthy Korean Woman. Genome Announcements, 5.
https://doi.org/10.1128/genomeA.01757-16
[21]  Biagioli, M., Laghi, L., Carino, A., Cipriani, S., Distrutti, E., Marchiano, S., Parolin, C., Scarpelli, P., Vitali, B. and Fiorucci, S. (2017) Metabolic Variability of a Multispecies Probiotic Preparation Impacts on the Anti-Inflammatory Activity. Frontiers in Pharmacology, 8, 505.
https://doi.org/10.3389/fphar.2017.00505
[22]  Toshimitsu, T., Ozaki, S., Mochizuki, J., Furuichi, K. and Asami, Y. (2017) Effects of Lactobacillus plantarum Strain OLL2712 Culture Conditions on the Anti-Inflammatory Activities for Murine Immune Cells and Obese and Type 2 Diabetic Mice. Applied and Environmental Microbiology, 83.
https://doi.org/10.1128/AEM.03001-16
[23]  Saez-Lara, M.J., Gomez-Llorente, C., Plaza-Diaz, J. and Gil, A. (2015) The Role of Probiotic Lactic Acid Bacteria and Bifidobacteria in the Prevention and Treatment of Inflammatory Bowel Disease and Other Related Diseases: A Systematic Review of Randomized Human Clinical Trials. BioMed research international, 2015, 505878.
[24]  Fonseca, W., Lucey, K., Jang, S., Fujimura, K.E., Rasky, A., Ting, H.A., Petersen, J., Johnson, C.C., Boushey, H.A., Zoratti, E., et al. (2017) Lactobacillus johnsonii Supplementation Attenuates Respiratory Viral Infection via Metabolic Reprogramming and Immune Cell Modulation. Mucosal Immunology.
https://doi.org/10.1038/mi.2017.13
[25]  Bharwani, A., Mian, M.F., Surette, M.G., Bienenstock, J. and Forsythe, P. (2017) Oral Treatment with Lactobacillus rhamnosus Attenuates Behavioural Deficits and Immune Changes in Chronic Social Stress. BMC Medicine, 15, 7.
https://doi.org/10.1186/s12916-016-0771-7
[26]  Wang, H., Lee, I.-S., Braun, C. and Enck, P. (2016) Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. Journal of Neurogastroenterology and Motility, 22, 589.
https://doi.org/10.5056/jnm16018
[27]  Gordon, M., Wallace, C., Stone, J., Thomas, A. and Akobeng, A. (2016) G38(P) Probiotics for Treatment of Chronic Constipation in Children: A Cochrane Systematic Review. Archives of Disease in Childhood, 101, A25.
[28]  Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., et al. (2017) Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491-502.
https://doi.org/10.1038/nrgastro.2017.75
[29]  Yang, W.T., Yang, G.L., Wang, Q., Huang, H.B., Jiang, Y.L., Shi, C.W., Wang, J.Z., Huang, K.Y., Jin, Y.B. and Wang, C.F. (2017) Protective Efficacy of Fc Targeting Conserved Influenza Virus M2e Antigen Expressed by Lactobacillus plantarum. Antiviral Research, 138, 9-21.
https://doi.org/10.1016/j.antiviral.2016.11.025
[30]  Yang, G., Jiang, Y., Tong, P., Li, C., Yang, W., Hu, J., Ye, L., Gu, W., Shi, C., Shan, B., et al. (2017) Alleviation of Enterotoxigenic Escherichia Coli Challenge by Recombinant Lactobacillus plantarum Expressing a FaeG- and DC-Targeting Peptide Fusion Protein. Beneficial Microbes, 8, 379-391.
https://doi.org/10.3920/BM2016.0116
[31]  Jiang, Y., Yang, G., Wang, Q., Wang, Z., Yang, W., Gu, W., Shi, C., Wang, J., Huang, H. and Wang, C. (2017) Molecular Mechanisms Underlying Protection against H9N2 Influenza Virus Challenge in Mice by Recombinant Lactobacillus plantarum with Surface Displayed HA2-LTB. Journal of Biotechnology, 259, 6-14.
https://doi.org/10.1016/j.jbiotec.2017.08.011
[32]  Liu, Y.Y., Yang, W.T., Shi, S.H., Li, Y.J., Zhao, L., Shi, C.W., Zhou, F.Y., Jiang, Y.L., Hu, J.T., Gu, W., et al. (2017) Immunogenicity of Recombinant Lactobacillus plantarum NC8 Expressing Goose Parvovirus VP2 Gene in BALB/c Mice. Journal of Veterinary Science, 18, 159-167.
https://doi.org/10.4142/jvs.2017.18.2.159
[33]  Wang, Y.B., Du, W., Fu, A.K., Zhang, X.P., Huang, Y., Lee, K.H., Yu, K., Li, W.F. and Li, Y.L. (2016) Intestinal Microbiota and Oral Administration of Enterococcus faecium Associated with the Growth Performance of New-Born Piglets. Beneficial Microbes, 7, 529-538.
https://doi.org/10.3920/BM2015.0099
[34]  Shi, S.H., Yang, W.T., Yang, G.L., Zhang, X.K., Liu, Y.Y., Zhang, L.J., Ye, L.P., Hu, J.T., Xing, X., Qi, C., et al. (2016) Lactobacillus plantarum Vaccine Vector Expressing Hemagglutinin Provides Protection against H9N2 Challenge Infection. Virus Research, 211, 46-57.
https://doi.org/10.1016/j.virusres.2015.09.005
[35]  Cai, R., Jiang, Y., Yang, W., Yang, W., Shi, S., Shi, C., Hu, J., Gu, W., Ye, L., Zhou, F., et al. (2016) Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS. Journal of Microbiology and Biotechnology, 26, 421-431.
https://doi.org/10.4014/jmb.1509.09030
[36]  Allain, T., Mansour, N.M., Bahr, M.M.A., Martin, R., Florent, I., Langella, P. and Bermúdez-Humarán, L.G. (2016) A New Lactobacilli In Vivo Expression System for the Production and Delivery of Heterologous Proteins at Mucosal Surfaces. FEMS Microbiology Letters, 363, fnw117-fnw117.
[37]  Suryavanshi, M.V., Paul, D., Doijad, S.P., Bhute, S.S., Hingamire, T.B., Gune, R.P. and Shouche, Y.S. (2017) Draft Genome Sequence of Lactobacillus plantarum Strains E2C2 and E2C5 Isolated from Human Stool Culture. Standards in Genomic Sciences, 12, 15.
https://doi.org/10.1186/s40793-017-0222-x
[38]  Evivie, S.E., Huo, G.C., Igene, J.O. and Bian, X. (2017) Some Current Applications, Limitations and Future Perspectives of Lactic Acid Bacteria as Probiotics. Food & Nutrition Research, 61, 1318034.
https://doi.org/10.1080/16546628.2017.1318034
[39]  Wells, J.M. (2011) Immunomodulatory Mechanisms of Lactobacilli. Microbial Cell Factories, 10, S17.
https://doi.org/10.1186/1475-2859-10-S1-S17
[40]  Drouault, S., Juste, C., Marteau, P., Renault, P. and Corthier, G. (2002) Oral Treatment with Lactococcus lactis Expressing Staphylococcus hyicus Lipase Enhances Lipid Digestion in Pigs with Induced Pancreatic Insufficiency. Applied and Environmental Microbiology, 68, 3166-3168.
https://doi.org/10.1128/AEM.68.6.3166-3168.2002
[41]  Kang, J., Chung, W.H., Lim, T.J., Whon, T.W., Lim, S. and Nam, Y.D. (2017) Complete Genome Sequence of Lactobacillus casei LC5, a Potential Probiotics for Atopic Dermatitis. Frontiers in Immunology, 8, 413.
https://doi.org/10.3389/fimmu.2017.00413
[42]  Kazou, M., Alexandraki, V., Pot, B., Tsakalidou, E. and Papadimitriou, K. (2017) Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533. Genome Announcements, 5.
https://doi.org/10.1128/genomeA.01533-16
[43]  Pan, L., Zhao, P.F., Ma, X.K., Shang, Q.H., Xu, Y.T., Long, S.F., Wu, Y., Yuan, F.M. and Piao, X.S. (2017) Probiotic Supplementation Protects Weaned Pigs against Enterotoxigenic Escherichia coli K88 Challenge and Improves Performance Similar to Antibiotics. Journal of Animal Science, 95, 2627-2639.
https://doi.org/10.2527/jas.2016.1243
[44]  Wang, M., Gao, Z., Zhang, Y. and Pan, L. (2016) Lactic Acid Bacteria as Mucosal Delivery Vehicles: A Realistic Therapeutic Option. Applied Microbiology and Biotechnology, 100, 5691-5701.
https://doi.org/10.1007/s00253-016-7557-x
[45]  Ren, D., Gong, S., Shu, J., Zhu, J., Rong, F., Zhang, Z., Wang, D., Gao, L., Qu, T., Liu, H., et al. (2017) Mixed Lactobacillus plantarum Strains Inhibit Staphylococcus aureus Induced Inflammation and Ameliorate Intestinal Microflora in Mice. BioMed Research International, 2017, Article ID: 7476467.
[46]  Oldak, A. and Zielinska, D. (2017) Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese. BioMed Research International, 2017, Article ID: 6820369.
[47]  Carvalho, R.D., Breyner, N., Menezes-Garcia, Z., Rodrigues, N.M., Lemos, L., Maioli, T.U., da Gloria Souza, D., Carmona, D., de Faria, A.M., Langella, P., et al. (2017) Secretion of Biologically Active Pancreatitis-Associated Protein I (PAP) by Genetically Modified Dairy Lactococcus lactis NZ9000 in the Prevention of Intestinal Mucositis. Microbial Cell Factories, 16, 27.
https://doi.org/10.1186/s12934-017-0624-x
[48]  Sebastian Domingo, J.J. (2017) Review of the Role of Probiotics in Gastrointestinal Diseases in Adults. Gastroenterologia y Hepatologia, 40, 417-429.
[49]  Chang, C. and Lin, H. (2016) Dysbiosis in Gastrointestinal Disorders. Best Practice & Research Clinical Gastroenterology, 30, 3-15.
https://doi.org/10.1016/j.bpg.2016.02.001
[50]  Antunes, M.M., Leocadio, P.C., Teixeira, L.G., Leonel, A.J., Cara, D.C., Menezes, G.B., Generoso, S.deV., Cardoso, V.N., Alvarez-Leite, J.I. and Correia, M.I. (2016) Pretreatment With L-Citrulline Positively Affects the Mucosal Architecture and Permeability of the Small Intestine in a Murine Mucositis Model. JPEN Journal of Parenteral and Enteral Nutrition, 40, 279-286.
https://doi.org/10.1177/0148607114567508
[51]  Benbouziane, B., Ribelles, P., Aubry, C., Martin, R., Kharrat, P., Riazi, A., Langella, P. and Bermudez-Humaran, L.G. (2013) Development of a Stress-Inducible Controlled Expression (SICE) System in Lactococcus lactis for the Production and Delivery of Therapeutic Molecules at Mucosal Surfaces. Journal of Biotechnology, 168, 120-129.
https://doi.org/10.1016/j.jbiotec.2013.04.019
[52]  Zanni, E., Schifano, E., Motta, S., Sciubba, F., Palleschi, C., Mauri, P., Perozzi, G., Uccelletti, D., Devirgiliis, C. and Miccheli, A. (2017) Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies Bulgaricus and Lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties. Frontiers in Microbiology, 8, 1206.
https://doi.org/10.3389/fmicb.2017.01206
[53]  Villena, J., Vizoso-Pinto, M.G. and Kitazawa, H. (2016) Intestinal Innate Antiviral Immunity and Immunobiotics: Beneficial Effects against Rotavirus Infection. Frontiers in Immunology, 7, 563.
https://doi.org/10.3389/fimmu.2016.00563
[54]  Chenoll, E., Casinos, B., Bataller, E., Buesa, J., Ramon, D., Genoves, S., Fabrega, J., Rivero Urgell, M. and Moreno Munoz, J.A. (2016) Identification of a Peptide Produced by Bifidobacterium longum CECT 7210 with Antirotaviral Activity. Frontiers in Microbiology, 7, 655.
https://doi.org/10.3389/fmicb.2016.00655
[55]  Vlasova, A.N., Kandasamy, S., Chattha, K.S., Rajashekara, G. and Saif, L.J. (2016) Comparison of Probiotic Lactobacilli and Bifidobacteria Effects, Immune Responses and Rotavirus Vaccines and Infection in Different Host Species. Veterinary Immunology and Immunopathology, 172, 72-84.
https://doi.org/10.1016/j.vetimm.2016.01.003
[56]  Liu, H., Hou, C., Wang, G., Jia, H., Yu, H., Zeng, X., Thacker, P.A., Zhang, G. and Qiao, S. (2017) Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets. Nutrients, 9.
https://doi.org/10.3390/nu9060559
[57]  Olek, A., Woynarowski, M., Ahren, I.L., Kierkus, J., Socha, P., Larsson, N. and Onning, G. (2017) Efficacy and Safety of Lactobacillus plantarum DSM 9843 (LP299V) in the Prevention of Antibiotic-Associated Gastrointestinal Symptoms in Children-Randomized, Double-Blind, Placebo-Controlled Study. The Journal of Pediatrics, 186, 82-86.
https://doi.org/10.1016/j.jpeds.2017.03.047
[58]  Awaad, A.S., Al-Mudhayyif, H.A., Al-Othman, M.R., Zain, M.E. and El-Meligy, R.M. (2017) Amhezole, a Novel Fungal Secondary Metabolite from Aspergillus terreus for Treatment of Microbial Mouth Infection. Phytotherapy Research: PTR, 31, 395-402.
[59]  Park, M.S., Kwon, B., Ku, S. and Ji, G.E. (2017) The Efficacy of Bifidobacterium longum BORI and Lactobacillus acidophilus AD031 Probiotic Treatment in Infants with Rotavirus Infection. Nutrients, 9.
https://doi.org/10.3390/nu9080887
[60]  Bereswill, S., Ekmekciu, I., Escher, U., Fiebiger, U., Stingl, K. and Heimesaat, M.M. (2017) Lactobacillus johnsonii Ameliorates Intestinal, Extra-Intestinal and Systemic Pro-Inflammatory Immune Responses Following Murine Campylobacter jejuni Infection. Scientific Reports, 7, 2138.
https://doi.org/10.1038/s41598-017-02436-2
[61]  Ballal, S.A., Veiga, P., Fenn, K., Michaud, M., Kim, J.H., Gallini, C.A., Glickman, J.N., Quere, G., Garault, P., Beal, C., et al. (2015) Host Lysozyme-Mediated Lysis of Lactococcus lactis Facilitates Delivery of Colitis-Attenuating Superoxide Dismutase to Inflamed Colons. Proceedings of the National Academy of Sciences of the United States of America, 112, 7803-7808.
https://doi.org/10.1073/pnas.1501897112
[62]  Leal, J.R., Heitman, S.J., Conly, J.M., Henderson, E.A. and Manns, B.J. (2016) Cost-Effectiveness Analysis of the Use of Probiotics for the Prevention of Clostridium Difficile-Associated Diarrhea in a Provincial Healthcare System. Infection Control and Hospital Epidemiology, 37, 1079-1086.
https://doi.org/10.1017/ice.2016.134
[63]  Golic, N., Veljovic, K., Popovic, N., Djokic, J., Strahinic, I., Mrvaljevic, I. and Terzic-Vidojevic, A. (2017) In Vitro and In Vivo Antagonistic Activity of New Probiotic Culture against Clostridium Difficile and Clostridium perfringens. BMC Microbiology, 17, 108.
https://doi.org/10.1186/s12866-017-1015-5
[64]  Mallina, R., Craik, J., Briffa, N., Ahluwalia, V., Clarke, J. and Cobb, A.G. (2017) Probiotic Containing Lactobacillus casei, Lactobacillus bulgaricus, and Streptococcus thermophiles (ACTIMEL) for the Prevention of Clostridium difficile Associated Diarrhoea in the Elderly with Proximal Femur Fractures. Journal of Infection and Public Health.
https://doi.org/10.1016/j.jiph.2017.04.001
[65]  Rodrigues, F., Iturriza-Gómara, M., Marlow, R., Gray, J., Nawaz, S., Januário, L. and Finn, A. (2013) The Evolving Epidemiology of Rotavirus Gastroenteritis in Central Portugal with Modest Vaccine Coverage. Journal of Clinical Virology, 56, 129-134.
https://doi.org/10.1016/j.jcv.2012.10.016
[66]  Fernandez, M.A. and Marette, A. (2017) Potential Health Benefits of Combining Yogurt and Fruits Based on Their Probiotic and Prebiotic Properties. Advances in Nutrition, 8, 155s-164s.
[67]  Karaffova, V., Csank, T., Mudronova, D., Kiraly. J., Revajova, V., Gancarcikova, S., Nemcova, R., Pistl, J., Vilcek, S. and Levkut, M. (2017) Influence of Lactobacillus reuteri L26 Biocenol on Immune Response against Porcine Circovirus Type 2 Infection in Germ-Free Mice. Beneficial Microbes, 8, 367-378.
https://doi.org/10.3920/BM2016.0114
[68]  Weber, G.J., Pushpakumar, S., Tyagi, S.C. and Sen, U. (2016) Homocysteine and Hydrogen Sulfide in Epigenetic, Metabolic and Microbiota Related Renovascular Hypertension. Pharmacological Research, 113, 300-312.
[69]  Yang, G., Jiang, Y., Yang, W., Du, F., Yao, Y., Shi, C. and Wang, C. (2015) Effective Treatment of Hypertension by Recombinant Lactobacillus plantarum Expressing Angiotensin Converting Enzyme Inhibitory Peptide. Microbial Cell Factories, 14, 202.
https://doi.org/10.1186/s12934-015-0394-2
[70]  Lecomte, V., Kaakoush, N.O., Maloney, C.A., Raipuria, M., Huinao, K.D., Mitchell, H.M. and Morris, M.J. (2015) Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters. PloS One, 10, e0126931.
https://doi.org/10.1371/journal.pone.0126931
[71]  Al Khodor, S., Reichert, B. and Shatat, I.F. (2017) The Microbiome and Blood Pressure: Can Microbes Regulate Our Blood Pressure? Frontiers in Pediatrics, 5, 138.
https://doi.org/10.3389/fped.2017.00138
[72]  Durgan, D.J., Ganesh, B.P., Cope, J.L., Ajami, N.J., Phillips, S.C., Petrosino, J.F., Hollister, E.B. and Bryan Jr., R.M. (2016) Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension. Hypertension (Dallas, Tex: 1979), 67, 469-474.
[73]  Karbach, S.H., Schonfelder, T., Brandao, I., Wilms, E., Hormann, N., Jackel, S., Schuler, R., Finger, S., Knorr, M., Lagrange, J., et al. (2016) Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction. Journal of the American Heart Association, 5.
https://doi.org/10.1161/JAHA.116.003698
[74]  Daliri, E.B., Oh, D.H. and Lee, B.H. (2017) Bioactive Peptides. Foods (Basel, Switzerland), 6.
[75]  Kolling, Y., Salva, S., Villena, J., Marranzino, G. and Alvarez, S. (2015) Non-Viable Immunobiotic Lactobacillus rhamnosus CRL1505 and Its Peptidoglycan Improve Systemic and Respiratory Innate Immune Response during Recovery of Immunocompromised-Malnourished Mice. International Immunopharmacology, 25, 474-484.
https://doi.org/10.1016/j.intimp.2015.02.006
[76]  Clua, P., Kanmani, P., Zelaya, H., Tada, A., Kober, A., Salva, S., Alvarez, S., Kitazawa, H. and Villena, J. (2017) Peptidoglycan from Immunobiotic Lactobacillus rhamnosus Improves Resistance of Infant Mice to Respiratory Syncytial Viral Infection and Secondary Pneumococcal Pneumonia. Frontiers in Immunology, 8, 948.
https://doi.org/10.3389/fimmu.2017.00948
[77]  Barbieri, N., Herrera, M., Salva, S., Villena, J. and Alvarez, S. (2017) Lactobacillus rhamnosus CRL1505 Nasal Administration Improves Recovery of T-Cell Mediated Immunity against Pneumococcal Infection in Malnourished Mice. Beneficial Microbes, 8, 393-405.
https://doi.org/10.3920/BM2016.0152
[78]  Panigrahi, P., Parida, S., Nanda, N.C., Satpathy, R., Pradhan, L., Chandel, D.S., Baccaglini, L., Mohapatra, A., Mohapatra, S.S., Misra, P.R., et al. (2017) A Randomized Synbiotic Trial to Prevent Sepsis among Infants in Rural India. Nature, 548, 407-412.
https://doi.org/10.1038/nature23480
[79]  Strasser, B., Geiger, D., Schauer, M., Gostner, J.M., Gatterer, H., Burtscher, M. and Fuchs, D. (2016) Probiotic Supplements Beneficially Affect Tryptophan-Kynurenine Metabolism and Reduce the Incidence of Upper Respiratory Tract Infections in Trained Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients, 8.
https://doi.org/10.3390/nu8110752
[80]  Yang, W.T., Yang, G.L., Shi, S.H., Liu, Y.Y., Huang, H.B., Jiang, Y.L., Wang, J.Z., Shi, C.W., Jing, Y.B. and Wang, C.F. (2017) Protection of Chickens against H9N2 Avian Influenza Virus Challenge with Recombinant Lactobacillus plantarum Expressing Conserved Antigens. Applied Microbiology and Biotechnology, 101, 4593-4603.
https://doi.org/10.1007/s00253-017-8230-8
[81]  Yang, W.T., Shi, S.H., Yang, G.L., Jiang, Y.L., Zhao, L., Li, Y. and Wang, C.F. (2016) Cross-Protective Efficacy of Dendritic Cells Targeting Conserved Influenza Virus Antigen Expressed by Lactobacillus plantarum. Scientific Reports, 6, 39665.
https://doi.org/10.1038/srep39665
[82]  Kwak, W., Kim, K., Lee, C., Lee, C., Kang, J., Cho, K., Yoon, S.H., Kang, D.K., Kim, H., Heo, J., et al. (2016) Comparative Analysis of the Complete Genome of Lactobacillus plantarum GB-LP2 and Potential Candidate Genes for Host Immune System Enhancement. Journal of Microbiology and Biotechnology, 26, 684-692.
https://doi.org/10.4014/jmb.1510.10081
[83]  Hayat, U., Dugum, M. and Garg, S. (2017) Chronic Constipation: Update on Management. Cleveland Clinic Journal of Medicine, 84, 397-408.
https://doi.org/10.3949/ccjm.84a.15141
[84]  Martinez-Martinez, M.I., Calabuig-Tolsa, R. and Cauli, O. (2017) The Effect of Probiotics as a Treatment for Constipation in Elderly People: A Systematic Review. Archives of Gerontology and Geriatrics, 71, 142-149.
https://doi.org/10.1016/j.archger.2017.04.004
[85]  Koppen, I.J., Velasco-Benitez, C.A., Benninga, M.A., Di Lorenzo, C. and Saps, M. (2016) Using the Bristol Stool Scale and Parental Report of Stool Consistency as Part of the Rome III Criteria for Functional Constipation in Infants and Toddlers. The Journal of Pediatrics, 177, 44-48.e41.
https://doi.org/10.1016/j.jpeds.2016.06.055
[86]  Zhao, Y. and Yu, Y.-B. (2016) Intestinal Microbiota and Chronic Constipation. SpringerPlus, 5, 1130.
https://doi.org/10.1186/s40064-016-2821-1
[87]  Wojtyniak, K., Horvath, A., Dziechciarz, P. and Szajewska, H. (2017) Lactobacillus casei Rhamnosus Lcr35 in the Management of Functional Constipation in Children: A Randomized Trial. The Journal of Pediatrics, 184, 101-105.e101.
https://doi.org/10.1016/j.jpeds.2017.01.068
[88]  Lim, S.M., Jang, H.M., Jang, S.E., Han, M.J. and Kim, D.H. (2017) Lactobacillus fermentum IM12 Attenuates Inflammation in Mice by Inhibiting NF-kappaB-STAT3 Signalling Pathway. Beneficial Microbes, 8, 407-419.
https://doi.org/10.3920/BM2016.0156
[89]  Michael, D.R., Davies, T.S., Moss, J.W.E., Calvente, D.L., Ramji, D.P. and Marchesi, J.R. (2017) The Anti-Cholesterolaemic Effect of a Consortium of Probiotics: An Acute Study in C57BL/6J Mice. Scientific Reports, 7, 2883.
[90]  Tomaro-Duchesneau, C., Saha, S., Malhotra, M., Jones, M.L., Rodes, L. and Prakash, S. (2015) Lactobacillus fermentum NCIMB 5221 and NCIMB 2797 as Cholesterol-Lowering Probiotic Biotherapeutics: In Vitro Analysis. Beneficial Microbes, 6, 861-869.
https://doi.org/10.3920/BM2015.0021
[91]  Wang, B., Chen, J., Wang, S., Zhao, X., Lu, G. and Tang, X. (2017) Lactobacillus plantarum L9 But Not Lactobacillus acidophilus LA Reduces Tumour Necrosis Factor Induced Bacterial Translocation in Caco-2 Cells. Beneficial Microbes, 8, 497-505.
https://doi.org/10.3920/BM2016.0019
[92]  Mencarelli, A., Cipriani, S., Francisci, D., Santucci, L., Baldelli, F., Distrutti, E. and Fiorucci, S. (2016) Highly Specific Blockade of CCR5 Inhibits Leukocyte Trafficking and Reduces Mucosal Inflammation in Murine Colitis. Scientific Reports, 6, 30802.
https://doi.org/10.1038/srep30802
[93]  Neurath, M.F. (2017) Current and Emerging Therapeutic Targets for IBD. Nature Reviews Gastroenterology & Hepatology, 14, 269-278.
https://doi.org/10.1038/nrgastro.2016.208
[94]  Ren, C., Zhang, Q., de Haan, B.J., Zhang, H., Faas, M.M. and de Vos, P. (2016) Identification of TLR2/TLR6 Signalling Lactic Acid Bacteria for Supporting Immune Regulation. Scientific Reports, 6, 34561.
https://doi.org/10.1038/srep34561
[95]  de Souza, H.S. and Fiocchi, C. (2016) Immunopathogenesis of IBD: Current State of the Art. Nature reviews Gastroenterology & Hepatology, 13, 13-27.
https://doi.org/10.1038/nrgastro.2015.186
[96]  Neyrinck, A.M., Etxeberria, U., Taminiau, B., Daube, G., Van Hul, M., Everard, A., Cani, P.D., Bindels, L.B. and Delzenne, N.M. (2017) Rhubarb Extract Prevents Hepatic Inflammation Induced by Acute Alcohol Intake, an Effect Related to the Modulation of the Gut Microbiota. Molecular Nutrition & Food Research, 61.
https://doi.org/10.1002/mnfr.201500899
[97]  Chen, Z., Shi, J., Yang, X., Nan, B., Liu, Y. and Wang, Z. (2015) Chemical and Physical Characteristics and Antioxidant Activities of the Exopolysaccharide Produced by Tibetan Kefir Grains during Milk Fermentation. International Dairy Journal, 43, 15-21.
https://doi.org/10.1016/j.idairyj.2014.10.004
[98]  Rocha-Ramirez, L.M., Hernandez-Chinas, U., Banos-Rojas, D., Xicohtencatl-Cortes, J., Chavez-Berrocal, M.E., Rico-Rosillo, G., Kretschmer, R. and Eslava, C.A. (2016) Pet Serine Protease from Enteroaggregative Escherichia coli Stimulates the Inflammatory Response Activating Human Macrophages. BMC Microbiology, 16, 158.
https://doi.org/10.1186/s12866-016-0775-7
[99]  Lascurain, L., Jensen, M.K., Guthery, S.L., Holmen, J. and Deneau, M. (2016) Inflammatory Bowel Disease Phenotype in Pediatric Primary Sclerosing Cholangitis. Inflammatory Bowel Diseases, 22, 146-150.
https://doi.org/10.1097/MIB.0000000000000586
[100]  Azcarate-Peril, M.A., Ritter, A.J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S.T. and Klaenhammer, T.R. (2017) Impact of Short-Chain Galactooligosaccharides on the Gut Microbiome of Lactose-Intolerant Individuals. Proceedings of the National Academy of Sciences of the United States of America, 114, E367-e375.
https://doi.org/10.1073/pnas.1606722113
[101]  Zubiria, M.G., Gambaro, S.E., Rey, M.A., Carasi, P., Serradell, M.L.A. and Giovambattista, A. (2017) Deleterious Metabolic Effects of High Fructose Intake: The Preventive Effect of Lactobacillus kefiri Administration. Nutrients, 9.
https://doi.org/10.3390/nu9050470
[102]  Riaz Rajoka, M.S., Shi, J., Zhu, J., Shao, D., Huang, Q., Yang, H. and Jin, M. (2017) Capacity of Lactic Acid Bacteria in Immunity Enhancement and Cancer Prevention. Applied Microbiology and Biotechnology, 101, 35-45.
https://doi.org/10.1007/s00253-016-8005-7
[103]  Kahouli, I., Malhotra, M., Westfall, S., Alaoui-Jamali, M. and Prakash, S. (2017) The potential of Lactobacillus Probiotic Treatments in Colorectal Cancer (CRC). AACR.
[104]  Lenoir, M., Del Carmen, S., Cortes-Perez, N.G., Lozano-Ojalvo, D., Munoz-Provencio, D., Chain, F., Langella, P., de Moreno de LeBlanc, A., LeBlanc, J.G. and Bermudez-Humaran, L.G. (2016) Lactobacillus casei BL23 Regulates Treg and Th17 T-Cell Populations and Reduces DMH-Associated Colorectal Cancer. Journal of Gastroenterology, 51, 862-873.
https://doi.org/10.1007/s00535-015-1158-9
[105]  So, S.S., Wan, M.L. and El-Nezami, H. (2017) Probiotics-Mediated Suppression of Cancer. Current opinion in Oncology, 29(1):62-72.
https://doi.org/10.1097/CCO.0000000000000342
[106]  Chen, X., Zhao, X., Wang, H., Yang, Z., Li, J. and Suo, H. (2017) Prevent Effects of Lactobacillus fermentum HY01 on Dextran Sulfate Sodium-Induced Colitis in Mice. Nutrients, 9.
https://doi.org/10.3390/nu9060545
[107]  Nakagomi, T., Cuevas, L.E., Gurgel, R.G., Elrokhsi, S.H., Belkhir, Y.A., Abugalia, M., Dove, W., Montenegro, F.M., Correia, J.B., Nakagomi, O., Cunliffe, N.A. and Hart, C.A. (2008) Apparent Extinction of Non-G2 Rotavirus Strains from Circulation in Recife, Brazil, after the Introduction of Rotavirus Vaccine. Archives of Virology, 153, 591-593.
https://doi.org/10.1007/s00705-007-0028-z
[108]  Luchs, A., Cilli, A., Morillo, S.G., Cassia Compagnoli Carmona, R. and do Carmo Sampaio Tavares Timenetsky, M. (2014) Rotavirus in adults Brazil, 2004-2011: G2P[4] Domi-Nance and Potential Impact on Vaccination. Brazilian Journal of Infectious Diseases, 18.
[109]  Liao, A.H., Jiang, C.B., Li, C.C., Chuang, H.C., Chiang Chiau, J.S., Chan, W.T., Yeung, C.Y., Cheng, M.L. and Lee, H.C. (2017) Combining Ultrasound and Lactobacilli Treatment for High-Fat-Diet-Induced Obesity in Mice. Journal of Animal Physiology and Animal Nutrition, 101, 703-712.
[110]  Jonsson, A.L. and Backhed, F. (2017) Role of Gut Microbiota in Atherosclerosis. Nature Reviews Cardiology, 14, 79-87.
https://doi.org/10.1038/nrcardio.2016.183
[111]  Ma, S., We, L., Yang, H., Deng, S. and Jevnikar, A. (2017) Emerging Technologies to Achieve Oral Delivery of GLP-1 and GLP-1 Analogs for Treatment of Type 2 Diabetes Mellitus (T2DM). Canadian Journal of Biotechnology, 1.
https://doi.org/10.24870/cjb.2017-000107
[112]  Marcial, G.E., Ford, A.L., Haller, M.J., Gezan, S.A., Harrison, N.A., Cai, D., Meyer, J.L., Perry, D.J., Atkinson, M.A., Wasserfall, C.H., et al. (2017) Lactobacillus johnsonii N6.2 Modulates the Host Immune Responses: A Double-Blind, Randomized Trial in Healthy Adults. Frontiers in Immunology, 8, 655.
https://doi.org/10.3389/fimmu.2017.00655
[113]  Tiequn, B., Guanqun, C. and Shuo, Z. (2015) Therapeutic Effects of Lactobacillus in Treating Irritable Bowel Syndrome: A Meta-Analysis. Internal Medicine (Tokyo, Japan), 54, 243-249.
https://doi.org/10.2169/internalmedicine.54.2710
[114]  Zhang, Y., Li, L., Guo, C., Mu, D., Feng, B., Zuo, X. and Li, Y. (2016) Effects of probiotic Type, Dose and Treatment Duration on Irritable Bowel Syndrome Diagnosed by Rome III Criteria: A Meta-Analysis. BMC Gastroenterology, 16, 62.
https://doi.org/10.1186/s12876-016-0470-z
[115]  Weaver, K.R., Melkus, G.D. and Henderson, W.A. (2017) Irritable Bowel Syndrome. The American Journal of Nursing, 117, 48-55.
https://doi.org/10.1097/01.NAJ.0000520253.57459.01
[116]  Nasioudis, D., Beghini, J., Bongiovanni, A.M., Giraldo, P.C., Linhares, I.M. and Witkin, S.S. (2015) Alpha-Amylase in Vaginal Fluid: Association with Conditions Favorable to Dominance of Lactobacillus. Reproductive Sciences (Thousand Oaks, Calif), 22, 1393-1398.
https://doi.org/10.1177/1933719115581000
[117]  Mirmonsef, P., Modur, S., Burgad, D., Gilbert, D., Golub, E.T., French, A.L., McCotter, K., Landay, A.L. and Spear, G.T. (2015) Exploratory Comparison of vaginal Glycogen and Lactobacillus Levels in Premenopausal and Postmenopausal Women. Menopause (New York, NY), 22, 702-709.
https://doi.org/10.1097/GME.0000000000000397
[118]  Tomusiak, A., Strus, M., Heczko, P.B., Adamski, P., Stefanski, G., Mikolajczyk-Cichonska, A. and Suda-Szczurek, M. (2015) Efficacy and Safety of a Vaginal Medicinal Product Containing Three Strains of Probiotic Bacteria: A Multicenter, Randomized, Double-Blind, and Placebo-Controlled Trial. Drug Design, Development and Therapy, 9, 5345-5354.
https://doi.org/10.2147/DDDT.S89214
[119]  Recine, N., Palma, E., Domenici, L., Giorgini, M., Imperiale, L., Sassu, C., Musella, A., Marchetti, C., Muzii, L. and Benedetti Panici, P. (2016) Restoring Vaginal Microbiota: Biological Control of Bacterial Vaginosis. A Prospective Case-Control Study Using Lactobacillus rhamnosus BMX 54 as Adjuvant Treatment against Bacterial Vaginosis. Archives of Gynecology and Obstetrics, 293, 101-107.
https://doi.org/10.1007/s00404-015-3810-2
[120]  Hutt, P., Lapp, E., Stsepetova, J., Smidt, I., Taelma, H., Borovkova, N., Oopkaup, H., Ahelik, A., Roop, T., Hoidmets, D., et al. (2016) Characterisation of Probiotic Properties in Human Vaginal Lactobacilli Strains. Microbial Ecology in Health and Disease, 27, 30484.
https://doi.org/10.3402/mehd.v27.30484
[121]  Klatt, N.R., Cheu, R. and Birse, K. (2017) Vaginal Bacteria Modify HIV Tenofovir Microbicide Efficacy in African Women. Science, 356, 938-945.
[122]  Velloza, J. and Heffron, R. (2017) The Vaginal Microbiome and Its Potential to Impact Efficacy of HIV Pre-Exposure Prophylaxis for Women. Current HIV/AIDS Reports.
https://doi.org/10.1007/s11904-017-0362-z
[123]  Huang, C.-H., Lin, Y.-C. and Jan, T.-R. (2017) Lactobacillus reuteri Induces Intestinal Immune Tolerance against Food Allergy in Mice. Journal of Functional Foods, 31, 44-51.
https://doi.org/10.1016/j.jff.2017.01.034
[124]  Yang, G., Yao, J., Yang, W., Jiang, Y., Du, J., Huang, H., Gu, W., Hu, J., Ye, L., Shi, C., et al. (2017) Construction and Immunological Evaluation of Recombinant Lactobacillus plantarum Expressing SO7 of Eimeria tenella Fusion DC-Targeting Peptide. Veterinary Parasitology, 236, 7-13.
https://doi.org/10.1016/j.vetpar.2017.01.023
[125]  Toshimitsu, T., Mochizuki, J., Ikegami, S. and Itou, H. (2016) Identification of a Lactobacillus plantarum Strain That Ameliorates Chronic Inflammation and Metabolic Disorders in Obese and Type 2 Diabetic Mice. Journal of Dairy Science, 99, 933-946.
https://doi.org/10.3168/jds.2015-9916
[126]  Chingwaru, W. and Vidmar, J. (2017) Potential of Zimbabwean Commercial Probiotic Products and Strains of Lactobacillus plantarum as Prophylaxis and Therapy against Diarrhoea Caused by Escherichia coli in Children. Asian Pacific Journal of Tropical Medicine, 10, 57-63.
[127]  Moon, G.S. and Narbad, A. (2017) Monitoring of Bioluminescent Lactobacillus plantarum in a Complex Food Matrix. Korean Journal for Food Science of Animal Resources, 37, 147-152.
https://doi.org/10.5851/kosfa.2017.37.1.147
[128]  Jiang, Y., Yang, G., Meng, F., Yang, W., Hu, J., Ye, L., Shi, C. and Wang, C. (2016) Immunological Mechanisms Involved in Probiotic-Mediated Protection against Citrobacter Rodentium-Induced Colitis. Beneficial Microbes, 7, 397-407.
https://doi.org/10.3920/BM2015.0119
[129]  Jiang, Y., Ye, L., Cui, Y., Yang, G., Yang, W., Wang, J., Hu, J., Gu, W., Shi, C., Huang, H., et al. (2017) Effects of Lactobacillus rhamnosus GG on the Maturation and Differentiation of Dendritic Cells in Rotavirus-Infected Mice. Beneficial Microbes, 8, 645-656.
https://doi.org/10.3920/BM2016.0157
[130]  Yu, M., Qi, R., Chen, C., Yin, J., Ma, S., Shi, W., Wu, Y., Ge, J., Jiang, Y. and Tang, L. (2017) Immunogenicity of Recombinant Lactobacillus casei-Expressing F4 (K88) Fimbrial Adhesin FaeG in Conjunction with a Heat-Labile Enterotoxin A (LTAK63) and Heat-Labile Enterotoxin B (LTB) of Enterotoxigenic Escherichia coli as an Oral Adjuvant in Mice. Journal of Applied Microbiology, 122, 506-515.
[131]  Li, X., Wang, E., Yin, B., Fang, D., Chen, P., Wang, G., Zhao, J., Zhang, H. and Chen, W. (2017) Effects of Lactobacillus casei CCFM419 on Insulin Resistance and Gut Microbiota in Type 2 Diabetic Mice. Beneficial Microbes, 8, 421-432.
https://doi.org/10.3920/BM2016.0167
[132]  Cortes-Perez, N.G., Lozano-Ojalvo, D., Maiga, M.A., Hazebrouck, S. and Adel-Patient, K. (2017) Intragastric Administration of Lactobacillus casei BL23 Induces Regulatory FoxP3+RORgammat+ T Cells Subset in Mice. Beneficial Microbes, 8, 433-438.
https://doi.org/10.3920/BM2016.0174
[133]  Wong, C.B., Khoo, B.Y., Sasidharan, S., Piyawattanametha, W., Kim, S.H., Khemthongcharoen, N., Ang, M.Y., Chuah, L.O. and Liong, M.T. (2015) Inhibition of Staphylococcus aureus by Crude and Fractionated Extract from Lactic Acid Bacteria. Beneficial Microbes, 6, 129-139.
https://doi.org/10.3920/BM2014.0021
[134]  Wen, K., Liu, F., Li, G., Bai, M., Kocher, J., Yang, X., Wang, H., Clark-Deener, S. and Yuan, L. (2015) Lactobacillus rhamnosus GG Dosage Affects the Adjuvanticity and Protection against Rotavirus Diarrhea in Gnotobiotic Pigs. Journal of Pediatric Gastroenterology and Nutrition, 60, 834-843.
https://doi.org/10.1097/MPG.0000000000000694
[135]  Suebwongsa, N., Lulitanond, V., Mayo, B., Yotpanya, P. and Panya, M. (2016) Development of an Escherichia coli-Lactobacillus casei Shuttle Vector for Heterologous Protein Expression in Lactobacillus casei. Springerplus, 5, 169.
[136]  Lin, R., Zhang, Y., Long, B., Li, Y., Wu, Y., Duan, S., Zhu, B., Wu, X. and Fan, H. (2017) Oral Immunization with Recombinant Lactobacillus acidophilus Expressing espA-Tir-M Confers Protection against Enterohemorrhagic Escherichia coli O157:H7 Challenge in Mice. Frontiers in Microbiology, 8.
[137]  Yang, W.C., Hsu, T.C., Cheng, K.C. and Liu, J.R. (2017) Expression of the Clonostachys rosea Lactonohydrolase Gene by Lactobacillus reuteri to Increase Its Zearalenone-Removing Ability. Microbial Cell Factories, 16, 69.
https://doi.org/10.1186/s12934-017-0687-8
[138]  Neuman, H. and Koren, O. (2017) The Pregnancy Microbiome. Nestle Nutrition Institute Workshop Series, 88, 1-9.
https://doi.org/10.1159/000455207
[139]  Bond, D.M., Morris, J.M. and Nassar, N. (2017) Study Protocol: Evaluation of the Probiotic Lactobacillus fermentum CECT5716 for the Prevention of Mastitis in Breastfeeding Women: A Randomised Controlled Trial. BMC Pregnancy and Childbirth, 17.
https://doi.org/10.1186/s12884-017-1330-8
[140]  Fabersani, E., Abeijon-Mukdsi, M.C., Ross, R., Medina, R., Gonzalez, S. and Gauffin-Cano, P. (2017) Specific Strains of Lactic Acid Bacteria Differentially Modulate the Profile of Adipokines in Vitro. Frontiers in Immunology, 8, 266.
https://doi.org/10.3389/fimmu.2017.00266
[141]  Miura, K., Ishioka, M. and Iijima, K. (2017) The Roles of the Gut Microbiota and Toll-like Receptors in Obesity and Nonalcoholic Fatty Liver Disease. Journal of Obesity & Metabolic Syndrome, 26, 86-96.
https://doi.org/10.7570/jomes.2017.26.2.86
[142]  Zhang, Z., Zhou, Z., Li, Y., Zhou, L., Ding, Q. and Xu, L. (2016) Isolated Exopolysaccharides from Lactobacillus rhamnosus GG Alleviated Adipogenesis Mediated by TLR2 in Mice. Scientific Reports, 6, 36083.
https://doi.org/10.1038/srep36083
[143]  Olaya Galan, N.N., Ulloa Rubiano, J.C., Velez Reyes, F.A., Fernandez Duarte, K.P., Salas Cardenas, S.P. and Gutierrez Fernandez, M.F. (2016) In Vitro Antiviral Activity of Lactobacillus casei and Bifidobacterium adolescentis against Rotavirus Infection Monitored by NSP4 Protein Production. Journal of Applied Microbiology, 120, 1041-1051.
https://doi.org/10.1111/jam.13069
[144]  Kandasamy, S., Vlasova, A.N., Fischer, D.D., Chattha, K.S., Shao, L., Kumar, A., Langel, S.N., Rauf, A., Huang, H.C., Rajashekara, G., et al. (2017) Unraveling the Differences between Gram-Positive and Gram-Negative Probiotics in Modulating Protective Immunity to Enteric Infections. Frontiers in Immunology, 8, 334.
https://doi.org/10.3389/fimmu.2017.00334
[145]  Gabriel, S., Dorny, P., Mwape, K.E., Trevisan, C., Braae, U.C., Magnussen, P., Thys, S., Bulaya, C., Phiri, I.K., Sikasunge, C.S., et al. (2017) Control of Taenia solium Taeniasis/Cysticercosis: The Best Way forward for Sub-Saharan Africa? Acta Trop, 165, 252-260.
https://doi.org/10.1016/j.actatropica.2016.04.010
[146]  Aoki, S.T., Settembre, E.C., Trask, S.D., Greenberg, H.B., Harrison, S.C. and Dormitzer, P.R. (2009) Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab. Science, 324.
https://doi.org/10.1126/science.1170481
[147]  Novotny Nunez, I., Maldonado Galdeano, C., de Moreno de LeBlanc, A. and Perdigon, G. (2015) Lactobacillus casei CRL 431 Administration Decreases Inflammatory Cytokines in a Diet-Induced Obese Mouse Model. Nutrition, 31, 1000-1007.
https://doi.org/10.1016/j.nut.2015.02.006
[148]  Lindsay, K.L., Brennan, L., Kennelly, M.A., Maguire, O.C., Smith, T., Curran, S., Coffey, M., Foley, M.E., Hatunic, M., Shanahan, F., et al. (2015) Impact of Probiotics in Women with Gestational Diabetes Mellitus on Metabolic Health: A Randomized Controlled Trial. American Journal of Obstetrics and Gynecology, 212, 496.e491-411.
[149]  Martínez-Porchas, M. and Vargas-Albores, F. (2017) Microbial Metagenomics in Aquaculture: A Potential Tool for a Deeper Insight into the Activity. Reviews in Aquaculture, 9, 42-56.
https://doi.org/10.1111/raq.12102
[150]  Ward, T.L., Knights, D. and Gale, C.A. (2017) Infant Fungal Communities: Current Knowledge and Research Opportunities. BMC Medicine, 15, 30.
https://doi.org/10.1186/s12916-017-0802-z
[151]  Tachedjian, G., Aldunate, M., Bradshaw, C.S. and Cone, R.A. (2017) The Role of Lactic Acid Production by Probiotic Lactobacillus Species in Vaginal Health. Research in Microbiology.
https://doi.org/10.1016/j.resmic.2017.04.001
[152]  Terán, V., Pizarro, P.L., Zacarías, M.F., Vinderola, G., Medina, R. and Van Nieuwenhove, C. (2015) Production of Conjugated Dienoic and Trienoic Fatty Acids by Lactic Acid Bacteria and Bifidobacteria. Journal of Functional Foods, 19, 417-425.
[153]  Augustin, M.A. and Sanguansri, L. (2015) Challenges and Solutions to Incorporation of Nutraceuticals in Foods. Annual Review of Food Science and Technology, 6, 463-477.
https://doi.org/10.1146/annurev-food-022814-015507
[154]  Marranzino, G., Villena, J., Salva, S. and Alvarez, S. (2012) Stimulation of Macrophages by Immunobiotic Lactobacillus Strains: Influence beyond the Intestinal Tract. Microbiology and Immunology, 56, 771-781.
[155]  Bajaj, B.K., Claes, I.J.J. and Lebeer, S. (2015) Functional Mechanisms of Probiotics. Journal of Microbiology, Biotechnology and Food Sciences, 4, 321-327.
https://doi.org/10.15414/jmbfs.2015.4.4.321-327
[156]  Rocha-Ramirez, L.M., Perez-Solano, R.A., Castanon-Alonso, S.L., Moreno Guerrero, S.S., Ramirez Pacheco, A., Garcia Garibay, M. and Eslava, C. (2017) Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages. Journal of Immunology Research, 2017, 4607491.
[157]  Zelaya, H., Tada, A., Vizoso-Pinto, M.G., Salva, S., Kanmani, P., Aguero, G., Alvarez, S., Kitazawa, H. and Villena, J. (2015) Nasal Priming with Immunobiotic Lactobacillus rhamnosus Modulates Inflammation-Coagulation Interactions and Reduces Influenza Virus-Associated Pulmonary Damage. Inflammation Research, 64, 589-602.
[158]  Albarracin, L., Kobayashi, H., Iida, H., Sato, N., Nochi, T., Aso, H., Salva, S., Alvarez, S., Kitazawa, H. and Villena, J. (2017) Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli. Frontiers in Immunology, 8, 57.
https://doi.org/10.3389/fimmu.2017.00057
[159]  Zelaya, H., Alvarez, S., Kitazawa, H. and Villena, J. (2016) Respiratory Antiviral Immunity and Immunobiotics: Beneficial Effects on Inflammation-Coagulation Interaction during Influenza Virus Infection. Frontiers in Immunology, 7.
[160]  Jung, J.Y., Shin, J.S., Lee, S.G., Rhee, Y.K., Cho, C.W., Hong, H.D. and Lee, K.T. (2015) Lactobacillus sakei K040706 Evokes Immunostimulatory Effects on Macrophages through TLR 2-Mediated Activation. International Immunopharmacology, 28, 88-96.
https://doi.org/10.1016/j.intimp.2015.05.037
[161]  Kemgang, T.S., Kapila, S., Shanmugam, V.P., Reddi, S. and Kapila, R. (2016) Fermented Milk with Probiotic Lactobacillus rhamnosus S1K3 (MTCC5957) Protects Mice from Salmonella by Enhancing Immune and Nonimmune Protection Mechanisms at Intestinal Mucosal Level. The Journal of Nutritional Biochemistry, 30, 62-73.
https://doi.org/10.1016/j.jnutbio.2015.11.018
[162]  Wan, M.L.Y., Turner, P.C., Allen, K.J. and El-Nezami, H. (2016) Lactobacillus rhamnosus GG Modulates Intestinal Mucosal Barrier and Inflammation in Mice Following Combined Dietary Exposure to Deoxynivalenol and Zearalenone. Journal of Functional Foods, 22, 34-43.
https://doi.org/10.1016/j.jff.2016.01.014
[163]  Rouxinol-Dias, A.L., Pinto, A.R., Janeiro, C., Rodrigues, D., Moreira, M., Dias, J. and Pereira, P. (2016) Probiotics for the Control of Obesity—Its Effect on Weight Change. Porto Biomedical Journal, 1, 12-24.
[164]  Quinteiro-Filho, W.M., Brisbin, J.T., Hodgins, D.C. and Sharif, S. (2015) Lactobacillus and Lactobacillus Cell-Free Culture Supernatants Modulate Chicken Macrophage Activities. Research in Veterinary Science, 103, 170-175.
https://doi.org/10.1016/j.rvsc.2015.10.005
[165]  Munoz-Atienza, E., Araujo, C., Lluch, N., Hernandez, P.E., Herranz, C., Cintas, L.M. and Magadan, S. (2015) Different Impact of Heat-Inactivated and Viable Lactic Acid Bacteria of Aquatic Origin on Turbot (Scophthalmus maximus L.) Head-Kidney Leucocytes. Fish & Shellfish Immunology, 44, 214-223.
https://doi.org/10.1016/j.fsi.2015.02.021
[166]  Hoseinifar, S.H., Roosta, Z., Hajimoradloo, A. and Vakili, F. (2015) The Effects of Lactobacillus acidophilus as Feed Supplement on Skin Mucosal Immune Parameters, Intestinal Microbiota, Stress Resistance and Growth Performance of Black Swordtail (Xiphophorus helleri). Fish & Shellfish Immunology, 42, 533-538.
https://doi.org/10.1016/j.fsi.2014.12.003
[167]  Inic-Kanada, A., Stojanovic, M., Marinkovic, E., Becker, E., Stein, E., Lukic, I., Djokic, R., Schuerer, N., Hegemann, J.H. and Barisani-Asenbauer, T. (2016) A Probiotic Adjuvant Lactobacillus rhamnosus Enhances Specific Immune Responses after Ocular Mucosal Immunization with Chlamydial Polymorphic Membrane Protein C. PloS One, 11, e0157875.
https://doi.org/10.1371/journal.pone.0157875
[168]  Kandasamy, S., Vlasova, A.N., Fischer, D., Kumar, A., Chattha, K.S., Rauf, A., Shao, L., Langel, S.N., Rajashekara, G. and Saif, L.J. (2016) Differential Effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on Human Rotavirus Binding, Infection, and B Cell Immunity. Journal of Immunology (Baltimore, Md : 1950), 196, 1780-1789.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413