Purification is a primary application of zone melting, in which the improvement of efficiency, production yield and minimum achievable impurity level are always the research focus due to the increasing demand for high purity metals. This paper has systematically outlined the whole development of related research on zone refining of metals including basic theories, variants of zone refining, parametric optimization, numerical models, and high purity analytical methods. The collection of this information could be of good value to improve the refining efficiency and the production of high purity metals by zone refining.
References
[1]
Hinrichs, J. (2014) High Purity Aluminium Analysis. Aluminum International Today - Analysis & Testing, 4-5.
[2]
Ghosh, K., Mani, V.N. and Dhar, S. (2009) Numerical Study and Experimental Investigation of Zone Refining in Ultra-High Purification of Gallium and Its Use in the Growth of GaAs Epitaxial Layers. Journal of Crystal Growth, 311, 1521-1528. https://doi.org/10.1016/j.jcrysgro.2009.01.102
[3]
Sangsingkeow, P., Berry, K.D., Dumas, E.J., Raudorf, T.W. and Underwood, T.A. (2003) Advances in Germanium Detector Technology. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 505, 183-186. https://doi.org/10.1016/S0168-9002(03)01047-7
[4]
Butterman, B.W.C. and Jorgenson, J.D. (2005) Germanium. US Geological Survey, Reston, Virginia.
[5]
Singh, A.J., Mathur, B.S. and Suryanarayana, P. (1975) Preparation of Electronics Grade Bismuth, Antimony, Tellurium, Cadmium and Zinc by Vacuum Distillation and Zone Refining.
[6]
Zaiour, A., Zahraman, K., Roumie, M., Charara, J., Fawaz, A., Lmai, F. and Hage-Ali, M. (2006) Purification of Tellurium to Nearly 7N Purity. Materials Science and Engineering B: Solid-State Materials for Advanced Technolog, 131, 54-61.
[7]
Munirathnam, N.R., Prasad, D.S., Sudheer, C.H., Rao, J.V. and Prakash, T.L. (2005) Zone Refining of Cadmium and Related Characterization. Bulletin of Materials Science, 28, 209-212. https://doi.org/10.1007/BF02711249
[8]
Su, C.-H. and Sha, Y.-G. (1998) Segregation Coefficients of Impurities in Selenium by Zone Refining. Journal of Crystal Growth, 187, 569-572. https://doi.org/10.1016/S0022-0248(98)00037-2
[9]
Curtolo, D.C., Friedrich, S. and Friedrich, B. (2017) High Purity Germanium, a Review on Principle Theories and Technical Production Methodologies. Journal of Crystallization Process and Technology, 7, 65-84. https://doi.org/10.4236/jcpt.2017.74005
[10]
Scott Hubbard, G., Haller, E.E. and Hansen, W.L. (1975) Characterization of Polycrystalline Zone-Refined Ingots of High-Purity Germanium. Nuclear Instruments and Methods, 130, 481-485. https://doi.org/10.1016/0029-554X(75)90046-4
[11]
Cressel, L.G. and Powell, J.A. (1957) John Wiley & Sons, Inc., New York.
[12]
Pfann, W.G. and Olsen, K.M. (1955) Bell Laboratories Record, 33, 201.
[13]
Vegad, M. and Bhatt, N.M. (2014) Review of Some Aspects of Single Crystal Growth Using Czochralski Crystal Growth Technique. Procedia Technology, 14, 438-446. https://doi.org/10.1016/j.protcy.2014.08.056
[14]
Scheel, H.J. (2003) The Development of Crystal Growth Technology. John Wiley & Sons, Inc., New York, 3-14. https://doi.org/10.1002/0470871687
[15]
Pfann, W.G. (1952) Principles of Zone Melting. The Journal of the Minerals, Metals & Materials Society (TMS), 4, 747-753. https://doi.org/10.1007/BF03398137
[16]
Pfann, W.G. (1966) Zone Melting. 2nd Edition, John Wiley & Sons, Inc., New York.
[17]
Wang, S., Fang, H.S., Jin, Z.L., Zhao, C.J. and Zheng, L.L. (2014) Integrated Analysis and Design Optimization of Germanium Purification Process Using Zone-Refining Technique. Journal of Crystal Growth, 408, 42-48. https://doi.org/10.1016/j.jcrysgro.2014.09.019
[18]
Yang, G., Govani, J., Mei, H., Guan, Y., Wang, G., Huang, M. and Mei, D. (2014) Investigation of Influential Factors on the Purification of Zone-Refined Germanium Ingot. Crystal Research and Technology, 49, 269-275. https://doi.org/10.1002/crat.201300418
[19]
Shim, M., Kim, Y.M., Lee, H.H., Hong, S.J. and Lee, J.H. (2016) Separation Behavior of Impurities and Selenium Reduction by the Reactive Zone Refining Process Using High-Frequency Induction Heating to Purify Te. Journal of Crystal Growth, 455, 6-12. https://doi.org/10.1016/j.jcrysgro.2016.09.032
[20]
Roumie, M., Zahraman, K., Zaiour, A., Mohanna, Y. and Hage-Ali, M. (2006) Study of Segregation Process of Impurities in Molten Tellurium after One Pass of Three Conjoint Zones in Zone Refining. Journal of Crystal Growth, 289, 260-268. https://doi.org/10.1016/j.jcrysgro.2005.11.002
[21]
Liu, Y.C., Moss, R. and Dost, S. (2006) A Computational Thermal Analysis for the Zone-Refining Processes of Cd and Te. Journal of Crystal Growth, 293, 146-156. https://doi.org/10.1016/j.jcrysgro.2006.04.109
[22]
Hashimoto, E. and Ueda, Y. (1994) Zone Refining of High-Purity Aluminum. Materials Transactions, 35, 262-265.
[23]
Nakamura, M., Watanabe, M., Tanaka, K., Kirihata, A., Sumomogi, T., Hoshikawa, H. and Tanaka, I. (2014) Zone Refining of Aluminum and Its Simulation. Materials Transactions, 55, 664-670.
Kurz, W. and Fisher, D. (1989) Fundamental of Solidification. 2nd Edition, Trans Tech Publications, Switzerland.
[26]
Yao, X., Furuya, K., Nakamura, Y., Wen, J., Endoh, A. and Shiohara, Y. (2017) NdBCO Melting and Solidification by a Zone-Melting Method. Journal of Materials Research, 10, 3003-3008. https://doi.org/10.1557/JMR.1995.3003
[27]
Scheil, E. (1947) Metallforschung. 2, 69.
[28]
Spim, J.A., Bernadou, M.J.S. and Garcia, A. (2000) Numerical Modeling and Optimization of Zone Refining. Journal of Alloys and Compounds, 298, 299-305. https://doi.org/10.1016/S0925-8388(99)00655-6
[29]
Rodway, G.H. and Hunt, J.D. (1989) Optimizing Zone Refining. Journal of Crystal Growth, 97, 680-688. https://doi.org/10.1016/0022-0248(89)90571-X
[30]
Cheung, N., Bertazzoli, R. and Garcia, A. (2008) Experimental Impurity Segregation and Numerical Analysis Based on Variable Solute Distribution Coefficients during Multi-Pass Zone Refining of Aluminum. Journal of Crystal Growth, 310, 1274-1280. https://doi.org/10.1016/j.jcrysgro.2008.01.007
[31]
Pfann, B.W.G. and Labora, B.T. (1957) Zone Melting. Metallurgical Reviews, 2, 29-76.
[32]
Rozin, K.M., Vigdorovich, V.N. and Krestovnikov, A.N. (1961) The Continuous Zone-Refining Method. Metall. i Topl., 5, 56-73.
Schlidknecht, H. (1964) Zonenschmelzen. Verlag Chemie, Weinheim.
[37]
Roussopoulos, G.S. and Rubini, P.A. (2004) A Thermal Analysis of the Horizontal Zone Refining of Indium Antimonide. Journal of Crystal Growth, 271, 333-340. https://doi.org/10.1016/j.jcrysgro.2004.07.058
[38]
Hashimoto, E., Ueda, Y., Kino, T., Hashimoto, E., Ueda, Y., Purification, T.K., Purity, U. and Journal, A. (1995) Purification of Ultra-High Purity Aluminum. Journal de Physique IV France, 5, 153-157.
[39]
Zhu, Y., Mimura, K., Ishikawa, Y. and Isshiki, M. (2002) Effect of Floating Zone Refining under Reduced Hydrogen Pressure on Copper Purification. Materials Transactions, 43, 2802-2807.
[40]
Wang, G., Sun, Y., Yang, G., Xiang, W., Guan, Y., Mei, D., Keller, C. and Chan, Y.-D. (2012) Development of Large Size High-Purity Germanium Crystal Growth. Journal of Crystal Growth, 352, 27-30. https://doi.org/10.1016/j.jcrysgro.2012.01.018
[41]
Mei, P.R., Moreira, S.P., Cardoso, E., Cortes, A.D.S. and Marques, F.C. (2012) Purification of Metallurgical Silicon by Horizontal Zone Melting. Solar Energy Materials and Solar Cells, 98, 233-239. https://doi.org/10.1016/j.solmat.2011.11.014
[42]
Mimura, K., Komukai, T. and Isshiki, M. (2005) Purification of Chromium by Hydrogen Plasma-Arc Zone Melting. Materials Science and Engineering: A, 403, 11-16. https://doi.org/10.1016/j.msea.2005.03.113
[43]
Reber, S., Zimmermann, W. and Kieliba, T. (2001) Zone Melting Recrystallization of Silicon Films for Crystalline Silicon Thin-Film Solar Cells. Solar Energy Materials and Solar Cells, 65, 409-416. https://doi.org/10.1016/S0927-0248(00)00120-3
[44]
Kino, T., Kamigaki, N., Yamasaki, H., Kawai, J., Deguchi, Y. and Nakamichi, I. (1976) Zone Refining in Aluminum. Transactions of the Japan Institute of Metals, 17, 645-648.
[45]
Burris, L., Stockman, C.H. and Dillon, I.G. (1955) Contribution to Mathematics of Zone Melting. The Journal of The Minerals, Metals & Materials Society (TMS), 7, 1017-1023.
[46]
Davis, L.W. (1959) The Efficiency of Zone-Refining Process. Transactions of the American Institute of Mechanical Engineers, 215, 672-675.
[47]
Ho, C., Yeh, H. and Yeh, T. (1998) Numerical Analysis on Optimal Zone Lengths for Each Pass in Multipass Zone-Refining Processes. The Canadian Journal of Chemical Engineering, 76, 3-9.
[48]
Ghosh, K., Mani, V.N. and Dhar, S. (2008) A Modeling Approach for the Purification of Group III Metals (Ga and In) by Zone Refining. Journal of Applied Physics, 104, 024904. https://doi.org/10.1063/1.2959832
[49]
Fischer, D. (1973) A Study on Zone Refining: Solid-Phase Impurity Diffusion and the Influence of Separating the Impure End. Journal of Applied Physics, 44, 1977-1982. https://doi.org/10.1063/1.1662502
[50]
Pfann, W.G. (1953) Change in Ingot Shape During Zone Melting. The Journal of The Minerals, Metals & Materials Society (TMS), 5, 1441-1442.
[51]
Zhang, X., Friedrich, S. and Friedrich, H.C.B. (2017) Investigation of Influencing Parameters on Zone Melting Refining of Aluminium, Part One Impurities: Iron and Silicon. Proceedings of EMC 2017, 1, 327-334.
[52]
Dost, S., Liu, Y.C., Haas, J., Roszmann, J., Grenier, S. and Audet, N. (2007) Effect of Applied Electric Current on Impurity Transport in Zone Refining. Journal of Crystal Growth, 307, 211-218. https://doi.org/10.1016/j.jcrysgro.2007.06.008
[53]
Lord, N.W. (1953) Journal of Metals, 197, 1531.
[54]
Reiss, H. (1954) Mathematical Methods for Zone-Melting Processes. The Journal of The Minerals, Metals & Materials Society (TMS), 6, 1053-1959.
[55]
Burton, J.A., Prim, R.C. and Slichter, W.P. (1953) The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical. The Journal of Chemical Physics, 21, 1987. https://doi.org/10.1063/1.1698728
[56]
Kino, T., Endo, T. and Kawata, S. (1974) Deviations from Matthiessen’s Rule of the Electrical Resistivity of Dislocations in Aluminum. Journal of the Physical Society of Japan, 36, 698-705. https://doi.org/10.1143/JPSJ.36.698
[57]
Guidoboni, R.J. and Leipziger, F.D. (1988) Glow Discharge Mass Spectrometry—The Newest Tool for High Purity Materials Analysis. Journal of Crystal Growth, 89, 16-20. https://doi.org/10.1016/0022-0248(88)90066-8
[58]
Tyler, G. (2001) ICP-OES, ICP-MS and AAS Techniques Compared. ICP Optical Emission Spectroscopy, 3, 1-11.
[59]
Jakubowski, N., Feldmann, I. and Stuewer, D. (1995) Comparison of ICP-MS with Spark Ablation and GDMS for Direct Element Analysis of Conductive Solids. Elsevier, Amsterdam.
[60]
Ure, A.M. (1982) Comprehensive Quantitative Analysis by Spark Source Mass Spectrometry: A Technique on the Brink. TrAC Trends in Analytical Chemistry, 1, 314-317. https://doi.org/10.1016/0165-9936(82)87027-1
[61]
Zong, L., Zhu, B., Lu, Z., Tan, Y., Jin, Y., Liu, N., Hu, Y., Gu, S., Zhu, J. and Cui, Y. (2015) Nanopurification of Silicon From 84% to 99.999% Purity with a Simple and Scalable Process. Proceedings of the National Academy of Sciences, 112, 13473-13477. https://doi.org/10.1073/pnas.1513012112
[62]
Taishi, T., Murao, Y., Ohno, Y. and Yonenaga, I. (2008) Segregation of Boron in Germanium Crystal. Journal of Crystal Growth, 311, 59-61. https://doi.org/10.1016/j.jcrysgro.2008.10.036
[63]
Carcia, R. and Baez, A.P. (2012) Atomic Absorption Spectrometry. Techniques and Instrumentation in Analytical Chemistry, 5, 67-94.
[64]
Chapon, P. Practical Comparisons Between RF-GD-OES and GDMS. Glow Discharge Optical Emission Spectroscopy, Technical Note 25, 1-2.
[65]
Beske, H.E. (1981) Review and Evaluation of Spark Source Mass Spectrometry as an Analytical Method. Fresenius’ Zeitschrift für analytische Chemie, 309, 329-341. https://doi.org/10.1007/BF00488613
[66]
Curtolo, D., Friedrich, S., Bellin, D., Nayak, G. and Friedrich, B. (2017) Definition of a First Process Window for Purification of Aluminum via “Cooled Finger” Crystallization Technique. Metals (Basel), 7, 341. https://doi.org/10.3390/met7090341
[67]
Friedrich, S., Coladetti Curtolo, D. and Friedrich, B. (2017) Effect of Process Parameter Variation on Purity during Rotary Fractional Crystallization of Aluminum. Open Journal of Metal, 7, 25-38. https://doi.org/10.4236/ojmetal.2017.72003
[68]
Zhu, T., Li, N., Mei, X., Yu, A. and Shang, S. (2001) Innovative Vacuum Distillation for Magnesium Recycling. Magnesium Technology 2001, John Wiley & Sons, Inc., New York, 55-60. https://doi.org/10.1002/9781118805497.ch12
[69]
Wang, Y.C., Tian, Y., Qu, T., Yang, B., Dai, Y.N. and Sun, Y.P. (2014) Purification of Magnesium by Vacuum Distillation and Its Analysis. Materials Science Forum, 788, 52-57. https://doi.org/10.4028/www.scientific.net/MSF.788.52
[70]
Lam, R. and Marx, D.R. (1996) Ultra High Purity Magnesium Vacuum Distillation Purification Method. US5582630 A. https://www.google.com/patents/US5582630
[71]
Tayama, K. and Kimura, S. (2003) Process and Apparatus for Producing High Purity Metals by Enhanced Purification. EP 1335030 A1.
[72]
Loffler, J., Uggowitzer, P., Wegmann, C., Becker, M. and Feichtinger, H. (2013) Process and Apparatus for Vacuum Distillation of High-Purity Magnesium. WO2013107644 A1.