全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improvement of a Mesh-Type Cu/Ni/γ-Al2O3/Al Catalyst for Steam Reforming of Dimethyl Ether by Metal (Fe, Zn or La) Addition for CO in Situ Removal

DOI: 10.4236/mrc.2018.71001, PP. 1-16

Keywords: Anodic Alumina, Dimethyl Ether, Hydrogen, Fe Promoter, CO Removal

Full-Text   Cite this paper   Add to My Lib

Abstract:

A mesh-type structured anodic alumina supported Cu/Ni bi-functional catalyst was developed for steam reforming of dimethyl ether (SRD). It was found that the Cu/Ni/γ-Al2O3/Al catalyst had remarkable catalytic activity and stability, but a high CO selectivity. Therefore, a multi-functional catalyst was proposed by metals (Fe, Zn, or La) addition to inhibit CO formation during the SRD process. The results show that promoter Fe can improve the Cu dispersion and decrease the reduction temperature of catalyst, and CO selectivity was minimized from 27% to around 3%. However, the addition of Zn and La only can decrease the CO selectivity to 12%. Furthermore, there was an excellent synergetic effect between Cu/Ni/γ-Al2O3 and Fe over the Cu/Ni/Fe/γ-Al2O3/Al catalyst by evaluating catalytic performance of catalysts with different packing structures. And the synergetic mechanism of the active components (γ-Al2O3, Cu or Cu2O, and Fe3O4

References

[1]  Qi, A., Peppley, B. and Karanet, K. (2007) Integrated Fuel Processors for Fuel Cell Application: A Review. Fuel Processing Technology, 88, 3-22.
https://doi.org/10.1016/j.fuproc.2006.05.007
[2]  Lü, J.H., Zhou, S., Ma, K., Meng, M. and Tian, Y. (2015) The Effect of P Modification on The Acidity of Hzsm-5 And P-Hzsm-5/CuO-Zno-Al2O3 Mixed Catalysts for Hydrogen Production by Dimethyl Ether Steam Reforming. Chinese Journal of Catalysis, 36, 1295-1303.
https://doi.org/10.1016/S1872-2067(15)60883-X
[3]  Matsumoto, T., Nishiguchi, T., Kanai, H., Utani, K., Matsumura, Y. and Imamura, S. (2004) Steam Reforming of Dimethyl Ether over H-Mordenite-Cu/CeO2 Catalysts. Applied Catalysis A: General, 276, 267-273.
https://doi.org/10.1016/j.apcata.2004.08.013
[4]  Ledesma, C. and Llorca, J. (2013) CuZn/ZrO2 Catalytic Honeycombs for Dimethyl Ether Steam Reforming and Autothermal Reforming. Fuel, 104, 711-716.
https://doi.org/10.1016/j.fuel.2012.06.116
[5]  Fan, F.Y., Zhang, Q., Xu, J.J., Ye, Q., Kameyama, H. and Zhu, Z.B. (2013) Catalytic Behavior Investigation of a Novel Anodized Al2O3/Al Monolith in Hydrolysis of Dimethyl Ether. Catalysis Today, 216, 194-199.
https://doi.org/10.1016/j.cattod.2013.07.013
[6]  Zhang, Q., Sun, D.M., Fan, F.Y., Zhang, Q.H. and Zhu, Z.B. (2013) A Novel Monolith Catalyst of Plate-Type Anodic Alumina for the Hydrolysis of Dimethyl Ether. Catalysis Communications, 34, 64-68.
https://doi.org/10.1016/j.catcom.2013.01.016
[7]  Semelsberger, T.A., Ott, K.C., Borup, R.L. and Greene, H.L. (2006) Generating Hydrogen-Rich Fuel-Cell Feeds from Dimethyl Ether (Dme) Using Physical Mixtures of a Commercial Cu/Zn/Al2O3 Catalyst and Several Solid-Acid Catalysts. Applied catalysis B: Environmental, 65, 291-300.
https://doi.org/10.1016/j.apcatb.2006.02.015
[8]  Feng, D.M., Zuo, Y.Z., Wang, D.Z. and Wang, J.F. (2009) Steam Reforming of Dimethyl Ether over Coupled ZSM-5 and Cu-Zn-Based Catalysts. Chinese Journal of Catalysis, 30, 223-229.
https://doi.org/10.1016/S1872-2067(08)60098-4
[9]  Oar-Arteta, L., Remiro, A., Vicente, J., Aguayo, A.T., Bilbao, J. and Gayubo, A.G. (2014) Stability of CuZnOAl2O3/HZSM-5 and CuFe2O4/HZSM-5 Catalysts in Dimethyl Ether Steam Reforming Operating in Reaction-Regeneration Cycles. Fuel Processing Technology, 126, 145-154.
https://doi.org/10.1016/j.fuproc.2014.04.028
[10]  Shimoda, N., Muroyama, H., Matsui, T., Faungnawakij, K., Kikuchi, R. and Eguchi, K. (2011) Dimethyl Ether Steam Reforming under Daily Start-Up and Shut-Down (DSS)-Like Operation over CuFe2O4 Spinel and Alumina Composite Catalysts. Applied Catalysis A: General, 409-410, 91-98.
https://doi.org/10.1016/j.apcata.2011.09.031
[11]  Faungnawakij, K., Shimoda, N., Fukunaga, T., Kikuchi, R. and Eguchi, K. (2008) Influence of Solid-Acid Catalysts on Steam Reforming and Hydrolysis of Dimethyl Ether for Hydrogen Production. Applied Catalysis A: General, 342, 139-145.
https://doi.org/10.1016/j.apcata.2008.02.039
[12]  Fan, F.Y., Zhang, Q., Wang, X., Ni, Y.H., Wu, Y.Q. and Zhu, Z.B. (2016) A Structured Cu-Based/γ-Al2O3/Al Plate-Type Catalyst for Steam Reforming of Dimethyl Ether: Self-Activation Behavior Investigation and Stability Improvement. Fuel, 186, 11-19.
https://doi.org/10.1016/j.fuel.2016.08.036
[13]  Yan, C.F., Hai, H., Guo, C.Q., Li, W.B., Huang, S.L. and Chen, H. (2014) Hydrogen Production by Steam Reforming of Dimethyl Ether and CO-PrOx in a Metal Foam Micro-Reactor. International Journal Hydrogen Energy, 39, 10409-10416.
https://doi.org/10.1016/j.ijhydene.2014.04.096
[14]  Dong, F., Tanabe, T., Suda, A., Takahashi, N., Sobukawa, H. and Shinjoh, H. (2008) Investigation of the OSC Performance of Pt/CeO2-ZrO2-Y2O3 Catalysts by CO Oxidation and 18 O/16 O Isotopic Exchange Reaction. Chemical Engineering Science, 63, 5020-5027.
https://doi.org/10.1016/j.ces.2007.12.016
[15]  Zhao, B., Wang, Q., Li, G. and Zhou, R.J. (2013) Effect of Rare Earth (La, Nd, Pr, Sm and Y) on the Performance of Pd/Ce0.67Zr0.33 MO2-δ Three-Way Catalysts. Journal of Environmental Chemical Engineering, 1, 534-543.
https://doi.org/10.1016/j.jece.2013.06.018
[16]  Lu, J.C., Li, X.F., He, S.F., Han, C.Y., Wan, G.P., Lei, Y.Q., Chen, R., Liu, P., Chen, K.Z., Zhang, L. and Luo, Y.M. (2017) Hydrogen Production via Methanol Steam Reforming over Ni-Based Catalysts: Influences of Lanthanum (La) Addition and Supports. International Journal Hydrogen Energy, 42, 13647-3657.
https://doi.org/10.1016/j.ijhydene.2016.08.165
[17]  Zhang, Q., Zhu, X.D. and Kameyama, H. (2008) Numerical Investigations on the Development of Plate Reformers: Comparison of Different Assignments of the Chambers. Aiche Journal, 54, 2707-2716.
https://dx.doi.org/10.1002/aic.11592
[18]  Zhang, L., Chu, H.L., Qu, H., Zhang, Q., Xu, H., Cao, J., Tang, Z.Y. and Xuan, J. (2018) An Investigation of Efficient Microstructured Reactor with Monolith Co/Anodic γ-Al2O3 Catalyst in Fischer-Tropsch Synthesis. International Journal of Hydrogen Energy, 43, 3077-3086.
https://doi.org/10.1016/j.ijhydene.2017.12.152
[19]  Zhang, Q., Jiang, Z.R., Sun, D.M., Han, D.Y. and Zhu, Z.B. (2012) Effect of Crystalline State of Anodized Porous Al2O3/Al as Supports by Hydration. Journal of Inorganic Materials, 27, 693-698.
[20]  Jing, Q.S., Lou, H., Mo, L.Y., Fei, J.H. and Zheng, X.M. (2004) Combination of CO2 Reforming and Partial Oxidation of Methane over Ni/BaO-SiO2 Catalysts to Reduce Low H2/CO Ratio Syngas Using A Fluidized Bed Reactor. Journal of Molecular Catalysis A: Chemical, 212, 211-217.
https://doi.org/10.1016/j.molcata.2003.10.041
[21]  Liang, M.S., Kang, W.K. and Xie, K.C. (2009) Comparison of Reduction Behavior of Fe2O3, ZnO and ZnFe2O4 by TPR Technique. Journal of Natural Gas Chemistry, 18, 110-113.
https://doi.org/10.1016/S1003-9953(08)60073-0
[22]  Khan, A., Chen, P., Boolchand, P. and Smirniotis, P.G. (2008) Modified Nano-Crystalline Ferrites for High-Temperature WGS Membrane Reactor Applications. Journal of Catalysis, 253, 91-104.
https://doi.org/10.1016/j.jcat.2007.10.018
[23]  Ledesma, C. and Llorca, J. (2011) Dimethyl Ether Steam Reforming over Cu-Zn-Pd/CeO2-ZrO2 Catalytic Monoliths. The Role of Cu Species on Catalyst Stability. The Journal of Physical Chemistry C, 115, 11624-11632.
https://doi.org/10.1021/jp202044f
[24]  Nishida, K., Li, D.L., Zhan, Y.Y., Shishido, T., Oumi, Y., Sano, T. and Takehira, K. (2009) Effective MgO Surface Doping of Cu/Zn/Al Oxides as Water-Gas Shift Catalysts. Applied Clay Science, 44, 211-217.
https://doi.org/10.1016/j.clay.2009.02.005
[25]  Kam, R., Selomulya, C., Amal, R. and Scott. J. (2010) The Influence of La-Doping on the Activity and Stability of Cu/ZnO Catalyst for the Low-Temperature Water-Gas Shift Reaction. Journal of Catalysis, 273, 73-81.
https://doi.org/10.1016/j.jcat.2010.05.004
[26]  Fang, X., Chen, C.Q., Lin, X.Y., She, Y.S., Zhang, Y.Y. and Zheng, Q. (2012) Effect of La2O3 on Microstructure and Catalytic Performance of CuO/CeO2 Catalyst in Water-Gas Shift Reaction. Chinese Journal of Catalysis, 33, 425-431.
https://doi.org/10.1016/S1872-2067(11)60337-9
[27]  Ali Reza, S.R., Maryam, B.K. and Ali Reza, R. (2011) Water Gas Shift Reaction over Zn-Ni/SiO2 Catalyst Prepared from [Zn(H2O)6]2[Ni(NCS)6]·H2O/SiO2 Precursor. Journal of Molecular Catalysis A: Chemical, 344, 11-17.
https://doi.org/10.1016/j.molcata.2011.04.010
[28]  Jha, A., Jeong, D.-W., Shim, J.-O., Jang, W.-J., Lee, Y.-L., Rode, C.V. and Roh, H.-S. (2015) Hydrogen Production by the Water-Gas Shift Reaction Using CuNi/Fe2O3 Catalyst. Catalysis Science & Technology, 5, 2752-2760.
https://doi.org/10.1039/C5CY00173K
[29]  Kim, W., Mohaideen, K.K., Seo, D.J. and Yoon, W.L. (2017) Methanol-Steam Reforming Reaction over Cu-Al-Based Catalysts Derived from Layered Double Hydroxides. International Journal Hydrogen Energy, 42, 2081-2087.
https://doi.org/10.1016/j.ijhydene.2016.11.014
[30]  Severino, F., Brito, J.L., Laine, J., Fierro, J.L.G. and Agud, A.L. (1998) Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4 and CuCr2O-Spinel Type Catalysts. Journal of Catalysis, 177, 82-95.
https://doi.org/10.1006/jcat.1998.2094
[31]  Deutsch, K.L. and Shanks, B.H. (2012) Active Species of Copper Chromite Catalyst in C-O Hydrogenolysis of 5-methylfurfuryl Alcohol. Journal of Catalysis, 285, 235-241.
https://doi.org/10.1016/j.jcat.2011.09.030
[32]  Liu, P. and Hensen, E.J.M. (2013) Highly Efficient and Robust Au/MgCuCr2O-Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde. Journal of the American Chemical Society, 135, 14032-14035.
https://doi.org/10.1021/ja406820f
[33]  Platzman, I., Brener, R., Haick, H. and Tannenbaum, R. (2008) Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions. The Journal of Physical Chemistry C, 112, 1101-1108.
https://doi.org/10.1021/jp076981k
[34]  Ma, Y.F., Guan, G.Q., Hao, X.G., Zuo, Z.J., Huang, W., Phanthong, P., Kusakabed, K. and Abudula, A. (2014) Highly-Efficient Steam Reforming of Methanol over Copper Modified Molybdenum Carbide. RSC Advance, 4, 44175-44184.
https://doi.org/10.1039/C4RA05673F
[35]  Faungnawakij, K., Shimoda, N., Fukunaga, T., Kikuchi, R. and Eguchi, K. (2009) Crystal Structure and Surface Species of CuFe2O-Spinel Catalysts in Steam Reforming of Dimethyl Ether. Applied Catalysis B: Environmental, 92, 341-350.
https://doi.org/10.1016/j.apcatb.2009.08.013
[36]  Pereira, A.L.C., Berrocal, G.J.P., Marchetti, S.G., Albornoz, A., de Souza, A.O. and do Carmo Rangel, M. (2008) A Comparison between the Precipitation and Impregnation Methods for Water Gas Shift Catalysts. Journal of Molecular Catalysis A: Chemical, 281, 66-72.
https://doi.org/10.1016/j.molcata.2007.07.042
[37]  Reddy, G.K., Boolchand, P. and Smirniotis, P.G. (2012) Unexpected Behavior of Copper in Modified Ferrites during High Temperature WGS Reaction-Aspects of Fe3+ - Fe2+ Redox Chemistry from Mosssbauer and XPS Studies. Journal Physical and Chemistry C, 116, 11019-11031.
https://doi.org/10.1021/jp301090d
[38]  Reddy, G.K., Boolchand, P. and Smirniotis, P.G. (2011) Sulfur Tolerant Metal Doped Fe/Ce Catalysts for High Temperature WGS Reaction at Low Steam to CO Ratios—XPS and Mossbauer Spectroscopic Study. Journal of Catalysis, 282, 258-269.
https://doi.org/10.1016/j.jcat.2011.06.016

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413