全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Novel Nanotube-Based Fiber Laser for Ultrashort Pulse Generation and Fast Measurements

DOI: 10.4236/mi.2018.72003, PP. 24-34

Keywords: Ultrashort Pulse Generation, Fiber Laser, Mode Locking, Solitons

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose a nanotube-based erbium-doped fiber laser that can deliver conventional soliton (CS) and stretched pulse (SP) based on D-shaped fiber saturable absorber (DF-SA) where evanescent-field interaction works. The novel Nanotube-based Fiber Laser can generate SP or CS by tuning pump power and polarization controller (PC) properly. The net cavity dispersion of laser is slightly negative. In our experiment, by optimizing the PC in the cavity, CS and SP can be obtained at the central wavelengths of 1530.6 nm and 1530.3 nm due to on carbon nanotubes and the spectral filtering effect induced by nonlinear polarization rotation. Although the acquired CS and SP nearly have the same central wavelengths, they show distinct optical spectra, 3-dB bandwidths. The proposed fiber laser with switchable CS and SP is attractive for ultrashort pulse generation and fast measurements in practical applications.

References

[1]  Liu, X.M., Yang, H.R., Cui, Y.D., Chen, G.W., Yang, Y., Wu, X.Q. and Guo, J. (2016) Graphene-Clad Microfibre Saturable Absorber for Ultrafast Fibre Lasers. Scientific Reports, 6, 26024.
https://doi.org/10.1038/srep26024
[2]  Cui, Y., Lu, F. and Liu, X. (2016) MoS2-Clad Microfibre Laser Delivering Conventional, Dispersion-managed and Dissipative Solitons. Scientific Reports, 6, 30524.
https://doi.org/10.1038/srep30524
[3]  Grelu, P. and Akhmediev, N. (2012) Dissipative Solitons for Mode-Locked Lasers. Nature Photonics, 6, 84-92.
https://doi.org/10.1038/nphoton.2011.345
[4]  Fermann, M.E. and Hartl, I. (2009) Ultrafast Fiber Laser Technology. IEEE Journal of Selected Topics in Quantum Electronics, 15, 191-206.
https://doi.org/10.1109/JSTQE.2008.2010246
[5]  Duan, L., Liu, X., Mao, D., Wang, L. and Wang, G. (2012) Experimental Observation of Dissipative Soliton Resonance in an Anomalous-Dispersion Fiber Laser. Optics Express, 20, 265-270.
https://doi.org/10.1364/OE.20.000265
[6]  Wang, L.R., Liu, X.M. and Gong, Y.K. (2009) Giant-Chirp Oscillator for Ultra-Large Net-Normal-Dispersion Fiber Lasers. Laser Physics Letters, 7, 63-67.
https://doi.org/10.1002/lapl.200910109
[7]  Kobtsev, S., Kukarin, S., Smirnov, S., Turitsyn, S. and Latkin, A. (2009) Generation of Double-Scale Femto/Pico-Second Optical Lumps in Mode-Locked Fiber Lasers. Optics Express, 17, 20707-20713.
https://doi.org/10.1364/OE.17.020707
[8]  Liu, X.M., Han, X.X. and Yao, X.K. (2016) Discrete Bisoliton Fiber Laser. Scientific Reports, 6, 34414.
https://doi.org/10.1038/srep34414
[9]  Sun, H.B., Liu, X.M., Gong, Y.K., Li, X.H. and Wang, L.R. (2010) Broadly Tunable Dual-Wavelength Erbium-Doped Ring Fiber Laser Based on a High-Birefringence Fiber Loop Mirror. Laser Physics, 20, 522-527.
https://doi.org/10.1134/S1054660X10030175
[10]  Li, X.H., Liu, X.M., Gong, Y.K., Sun, H.B., Wang, L.R. and Lu, K.Q. (2009) A Novel Erbium/Ytterbium Co-Doped Distributed Feedback Fiber Laser with Single-Polarization and Unidirectional Output. Laser Physics Letters, 7, 55-59.
https://doi.org/10.1002/lapl.200910100
[11]  Keller, U. (2003) Recent Developments in Compact Ultrafast Lasers. Nature, 424, 831-838.
https://doi.org/10.1038/nature01938
[12]  Wise, F.W., Chong, A. and Renninger, W.H. (2008) High-Energy Femtosecond Fiber Lasers Based on Pulse Propagation at Normal Dispersion. Laser & Photonics Reviews, 2, 58-73.
https://doi.org/10.1002/lpor.200710041
[13]  Han, D.D., Liu, X.M., Cui, Y.D., Wang, G.X., Zeng, C. and Yun, L. (2014) Simultaneous Picosecond and Femtosecond Solitons Delivered from a Nanotube-Mode-Locked All-Fiber Laser. Optics Letters, 39, 1565-1568.
https://doi.org/10.1364/OL.39.001565
[14]  Liu, X.M., Chung, Y., Lin, A., Zhao, W., Lu, K.Q., Wang, Y.S. and Zhang, T.Y. (2008) Tunable and Switchable Multi-Wavelength Erbium-Doped Fiber Laser with Highly Nonlinear Photonic Crystal Fiber and Polarization Controllers. Laser Physics Letters, 5, 904-907.
https://doi.org/10.1002/lapl.200810085
[15]  Cui, Y.D., Liu, X.M. and Zeng, C. (2014) Conventional and Dissipative Solitons in a CFBG-Based Fiber Laser Mode-Locked with a Graphene-Nanotube Mixture. Laser Physics Letters, 11, Article ID: 055106.
https://doi.org/10.1088/1612-2011/11/5/055106
[16]  Luo, Z.C., Luo, A.P., Xu, W.C., Song, C.X., Gao, Y.X. and Chen, W.C. (2009) Sideband Controllable Soliton All-Fiber Ring Laser Passively Mode-Locked by Nonlinear Polarization Rotation. Laser Physics Letters, 6, 582-585.
https://doi.org/10.1002/lapl.200910032
[17]  Liu, X. (2009) Dissipative Soliton Evolution in Ultra-Large Normal-Cavity Dispersion Fiber Lasers. Optics Express, 17, 9549-9557.
https://doi.org/10.1364/OE.17.009549
[18]  Wang, W., Meng, H.Y., Wu, X.W., Xiong, R., Xue, H.C., Tan, C.H. and Huang, X.G. (2012) A Nonlinear Polarization Rotation-Based Linear Cavity Waveband Switchable Multi-Wavelength Fiber Laser. Laser Physics Letters, 10, Article ID: 015104.
[19]  Liu, X. (2010) Hysteresis Phenomena and Multipulse Formation of a Dissipative System in a Passively Mode-Locked Fiber Laser. Physical Review A, 81, Article ID: 023811.
https://doi.org/10.1103/PhysRevA.81.023811
[20]  Ouyang, C., Shum, P., Wu, K., Wong, J.H., Lam, H.Q. and Aditya, S. (2011) Bidirectional Passively Mode-Locked Soliton Fiber Laser with a Four-Port Circulator. Optics Letters, 36, 2089-2091.
https://doi.org/10.1364/OL.36.002089
[21]  Liu, X. and Cui, Y. (2015) Flexible Pulse-Controlled Fiber Laser. Scientific Reports, 5, Article No. 9399.
https://doi.org/10.1038/srep09399
[22]  Xu, B., Martinez, A., Set, S.Y., Goh, C.S. and Yamashita, S. (2013) A Net Normal Dispersion All-Fiber Laser Using a Hybrid Mode-Locking Mechanism. Laser Physics Letters, 11, Article ID: 025101.
[23]  Yun, L. and Liu, X. (2012) Generation and Propagation of Bound-State Pulses in a Passively Mode-Locked Figure-Eight Laser. IEEE Photonics Journal, 4, 512-519.
https://doi.org/10.1109/JPHOT.2012.2191948
[24]  Salhi, M., Haboucha, A., Leblond, H. and Sanchez, F. (2008) Theoretical Study of Figure-Eight All-Fiber Laser. Physical Review A, 77, Article ID: 033828.
https://doi.org/10.1103/PhysRevA.77.033828
[25]  Bonaccorso, F., Sun, Z., Hasan, T. and Ferrari, A.C. (2010) Graphene Photonics and Optoelectronics. Nature Photonics, 4, 611-622.
https://doi.org/10.1038/nphoton.2010.186
[26]  Cui, Y. and Liu, X. (2013) Graphene and Nanotube Mode-Locked Fiber Laser Emitting Dissipative and Conventional Solitons. Optics Express, 21, 18969-18974.
https://doi.org/10.1364/OE.21.018969
[27]  Lin, Y.H. and Lin, G.R. (2012) Free-Standing Nano-Scale Graphite Saturable Absorber for Passively Mode-Locked Erbium Doped Fiber Ring Laser. Laser Physics Letters, 9, 398-404.
https://doi.org/10.7452/lapl.201210010
[28]  Zeng, C., Liu, X. and Yun, L. (2013) Bidirectional Fiber Soliton Laser Mode-Locked by Single-Wall Carbon Nanotubes. Optics Express, 21, 18937-18942.
https://doi.org/10.1364/OE.21.018937
[29]  Liu, X., Han, D., Sun, Z., Zeng, C., Lu, H., Mao, D. and Wang, F. (2013) Versatile Multi-Wavelength Ultrafast Fiber Laser Mode-Locked by Carbon Nanotubes. Scientific Reports, 3, Article No. 2718.
https://doi.org/10.1038/srep02718
[30]  Im, J.H., Choi, S.Y., Rotermund, F. and Yeom, D.I. (2010) All-Fiber Er-Doped Dissipative Soliton Laser Based on Evanescent Field Interaction with Carbon Nanotube Saturable Absorber. Optics Express, 18, 22141-22146.
https://doi.org/10.1364/OE.18.022141
[31]  Set, S.Y., Yaguchi, H., Tanaka, Y. and Jablonski, M. (2004) Ultrafast Fiber Pulsed Lasers Incorporating Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 10, 137-146.
https://doi.org/10.1109/JSTQE.2003.822912
[32]  Wang, Q., Chen, T., Li, M., Zhang, B., Lu, Y. and Chen, K.P. (2013) All-Fiber Ultrafast Thulium-Doped Fiber Ring Laser with Dissipative Soliton and Noise-Like Output in Normal Dispersion by Single-Wall Carbon Nanotubes. Applied Physics Letters, 103, Article ID: 011103.
[33]  Scardaci, V., Sun, Z., Wang, F., Rozhin, A.G., Hasan, T., Hennrich, F. and Ferrari, A.C. (2008) Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers. Advanced Materials, 20, 4040-4043.
https://doi.org/10.1002/adma.200800935
[34]  Popa, D., Sun, Z., Hasan, T., Cho, W.B., Wang, F., Torrisi, F. and Ferrari, A.C. (2012) 74-fs Nanotube-Mode-Locked Fiber Laser. Applied Physics Letters, 101, Article ID: 153107.
https://doi.org/10.1063/1.4757293
[35]  Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. and Achiba, Y. (1999) Optical Properties of Single-Wall Carbon Nanotubes. Synthetic Metals, 103, 2555-2558.
https://doi.org/10.1016/S0379-6779(98)00278-1
[36]  Song, Y.W., Yamashita, S. and Maruyama, S. (2008) Single-Walled Carbon Nanotubes for High-Energy Optical Pulse Formation. Applied Physics Letters, 92, Article ID: 021115.
[37]  Song, Y.W., Yamashita, S., Goh, C.S. and Set, S.Y. (2007) Carbon Nanotube Mode Lockers with Enhanced Nonlinearity via Evanescent Field Interaction in D-Shaped Fibers. Optics Letters, 32, 148-150.
https://doi.org/10.1364/OL.32.000148
[38]  Chow, K.K. and Yamashita, S. (2009) Four-Wave Mixing in a Single-Walled Carbon-Nanotube-Deposited D-Shaped Fiber and Its Application in Tunable Wavelength Conversion. Optics Express, 17, 15608-15613.
https://doi.org/10.1364/OE.17.015608
[39]  Song, Y.W., Yamashita, S., Einarsson, E. and Maruyama, S. (2007) All-Fiber Pulsed Lasers Passively Mode Locked by Transferable Vertically Aligned Carbon Nanotube Film. Optics Letters, 32, 1399-1401.
https://doi.org/10.1364/OL.32.001399
[40]  Liu, X., Cui, Y., Han, D., Yao, X. and Sun, Z. (2015) Distributed Ultrafast Fibre Laser. Scientific Reports, 5, Article No. 12731.
[41]  Liu, X. (2011) Soliton Formation and Evolution in Passively-Mode-Locked Lasers with Ultralong Anomalous-Dispersion Fibers. Physical Review A, 84, Article ID: 023835.
https://doi.org/10.1103/PhysRevA.84.023835
[42]  Nishizawa, N., Nozaki, Y., Itoga, E., Kataura, H. and Sakakibara, Y. (2011) Dispersion-Managed, High-Power, Er-Doped Ultrashort-Pulse Fiber Laser Using Carbon-Nanotube Polyimide Film. Optics Express, 19, 21874-21879.
https://doi.org/10.1364/OE.19.021874
[43]  Ilday, F.Ö., Buckley, J.R., Clark, W.G. and Wise, F.W. (2004) Self-Similar Evolution of Parabolic Pulses in a Laser. Physical Review Letters, 92, Article ID: 213902.
https://doi.org/10.1364/NLGW.2004.MD8
[44]  Dudley, J.M., Finot, C., Richardson, D.J. and Millot, G. (2007) Self-Similarity in Ultrafast Nonlinear Optics. Nature Physics, 3, 597-603.
https://doi.org/10.1038/nphys705
[45]  Mao, D., Liu, X.M., Wang, L.R., Hu, X.H. and Lu, H. (2010) Partially Polarized Wave-Breaking-Free Dissipative Soliton with Super-Broad Spectrum in a Mode-Locked Fiber Laser. Laser Physics Letters, 8, 134-138.
https://doi.org/10.1002/lapl.201010105
[46]  Han, D. and Liu, X. (2012) Sideband-Controllable Mode-Locking Fiber Laser Based on Chirped Fiber Bragg Gratings. Optics Express, 20, 27045-27050.
https://doi.org/10.1364/OE.20.027045
[47]  Lin, Y.H., Yang, C.Y., Liou, J.H., Yu, C.P. and Lin, G.R. (2013) Using Graphene Nano-Particle Embedded in Photonic Crystal Fiber for Evanescent Wave Mode-Locking of Fiber Laser. Optics Express, 21, 16763-16776.
https://doi.org/10.1364/OE.21.016763
[48]  Lin, Y.H. and Lin, G.R. (2013) Kelly Sideband Variation and Self Four-Wave-Mixing in Femtosecond Fiber Soliton Laser Mode-Locked by Multiple Exfoliated Graphite Nano-Particles. Laser Physics Letters, 10, Article ID: 045109.
https://doi.org/10.1088/1612-2011/10/4/045109
[49]  Yu, T., Golovchenko, E.A., Pilipetskii, A.N. and Menyuk, C.R. (1997) Dispersion-Managed Soliton Interactions in Optical Fibers. Optics Letters, 22, 793-795.
https://doi.org/10.1364/OL.22.000793
[50]  Salhi, M., Leblond, H. and Sanchez, F. (2003) Theoretical Study of the Stretched-Pulse Erbium-Doped Fiber Laser. Physical Review A, 68, Article ID: 033815.
https://doi.org/10.1103/PhysRevA.68.033815
[51]  Bale, B.G. and Wabnitz, S. (2010) Strong Spectral Filtering for a Mode-Locked Similariton Fiber Laser. Optics Letters, 35, 2466-2468.
https://doi.org/10.1364/OL.35.002466
[52]  Oktem, B., Ülgüdür, C. and Ilday, F.Ö. (2010) Soliton-Similariton Fibre Laser. Nature Photonics, 4, 307-311.
https://doi.org/10.1038/nphoton.2010.33
[53]  Anderson, D., Desaix, M., Karlsson, M., Lisak, M. and Quiroga-Teixeiro, M.L. (1993) Wave-Breaking-Free Pulses in Nonlinear-Optical Fibers. JOSA B, 10, 1185-1190.
https://doi.org/10.1364/JOSAB.10.001185
[54]  Zhao, L.M., Lu, C., Tam, H.Y., Wai, P.K.A. and Tang, D.Y. (2009) Gain Dispersion for Dissipative Soliton Generation in All-Normal-Dispersion Fiber Lasers. Applied Optics, 48, 5131-5137.
https://doi.org/10.1364/AO.48.005131
[55]  Liu, X.M. and Mao, D. (2010) Compact All-Fiber High-Energy Fiber Laser with Sub-300-fs Duration. Optics Express, 18, 8847-8852.
https://doi.org/10.1364/OE.18.008847
[56]  Kashiwagi, K. and Yamashita, S. (2009) Deposition of Carbon Nanotubes around Microfiber via Evanascent Light. Optics Express, 17, 18364-18370.
https://doi.org/10.1364/OE.17.018364
[57]  Tseng, S.M. and Chen, C.L. (1992) Side-Polished Fibers. Applied Optics, 31, 3438-3447.
https://doi.org/10.1364/AO.31.003438
[58]  Ma, S.P. and Tseng, S.M. (1997) High-Performance Side-Polished Fibers and Applications as Liquid Crystal Clad Fiber Polarizers. Journal of Lightwave Technology, 15, 1554-1558.
https://doi.org/10.1109/50.618389
[59]  Nelson, L.E., Jones, D.J., Tamura, K., Haus, H.A. and Ippen, E.P. (1997) Ultrashort-Pulse Fiber Ring Lasers. Applied Physics B: Lasers and Optics, 65, 277-294.
https://doi.org/10.1007/s003400050273
[60]  Tran, T.V.A., Lee, K., Lee, S.B. and Han, Y.G. (2008) Switchable Multiwavelength Erbium Doped Fiber Laser Based on a Nonlinear Optical Loop Mirror Incorporating Multiple Fiber Bragg Gratings. Optics Express, 16, 1460-1465.
https://doi.org/10.1364/OE.16.001460

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133